
Day 5: 17/May/2012

Validation, Error Messages

p  Implement the Validation method
p  to reject improper input

p Validations are used to ensure that only
valid data is saved into our database.

p Why Validate?	

n  At the Entrance of data, reject invalid data	

p  Example: Age 500?
p  Stock sales order: 500,000 shares at 1 yen!?
p  Pizza order : 17 pizzas of 1 inch!?	

n  To avoid logical Error and troubles,

“unacceptable values” are programmed to be
blocked.

http://guides.rubyonrails.org/active_record_validations_callbacks.html#why-use-validations	

p Validation is to prove data in the context
p  Logical check

p Verification is the check of format and
p  symbolic check
p  CD and DVD’s read after write check
p  Physical format check
p  Protocol header check sum, etc.

Our goal is to develop the Problem Solving
Engine.

It is desirable to let any ‘guest’ write into
the causes and solutions’ links to certain
problem, to collect wisdom.

But, the solutions may vary depending to
ages, sexes, occupations, and such.

So first, we give the Guest Table the field of
age and sex, for the beginning.

 (Is there any expanded version coming?)	

We also give Causes and Solutions field the
counter of the pros and cons.

Let many guests to click the buttons for pro
and con, (desirably only once per person.)
	

I cannot
get

married	

I am
not rich.	

I cannot
prospect for
the future.	

I have
no

friend!	

Improve
my human
relationship	

Give the Solution for its own
cause of the problem	

Find out the
original Causes of

the Problem	

Search for the
cause derived

from other
problems	

Give hits to
solve other
problems 	

53 pros	

7 cons	

42 pros	

18 cons	

Financial
Crisis	

Population
Decrease	

Welfare
Budget

Decrease	

Income
Shortage	

Raise
Consumers’

Tax	

Give the Solution for its own
cause of the problem	

Find out the
original Causes of

the Problem	

Search for the
cause derived

from other
problems	

Give hits to
solve other
problems 	

532 pros	

87 cons	

258 pros	

429
cons	

Guest
 can be anonymous, but should have
“login id”, to collect pros and cons fairly.

Let “Login ID” be “mail address,” for self
registration.

Fields:
 Age (Integer), and Sex (Integer)

	

Problem
 has a title field (string,)
 a content field (text,)
 and the proposer’s guest ID (link.)
	

Essential Cause should be “Facts.”
Cause
 should have a field of ‘fact’ (text,)
 a counter for pro (integer,)
 a counter for con (integer,)
 and a link to the solution (link.)
	

Solution is an “Action.”
Solution
 should have a field of ‘action’ (text,)
 a counter for pro (integer,)
 a counter for con (integer,)
 and a link to the solution (link.)
	

‘Vote’ is the special feature of this system,
to collect wisdom of visitors.

Vote table is the record of guests’
participation.

Vote
 should have a field of guest ID (link,)
 a flag of pro or con (integer,)
 a link to which ‘cause’ or ‘solution’ vote
(link.)
	

One ‘problem’ could be a cause of another
problem, or it could lead to another
problem.

So problem table should have ‘to link’ and
‘from link’ between records. 	

Install Guest Table which has fields of
 login (email address) :string,
 age :integer,
 sex :integer,

With the Validation of input values.

Password field should be encrypted, but we

will use a gem for login authentication
later. Until then, we do not use password.	

login:string
 should be a format of email address, which
contain only one ‘@’, and the other letters should
A-Z, a-z, ‘.’, _, %, +, or ‘-’.
 (But we can use mail gem to validate email
address.)

age:integer
 valid when it is between 1 and 130!

sex: integer
 valid when it is 1 or 2, but let it input with ‘radio
button.’

The scaffolding command is
 rails g scaffold guest login:string
age:integer sex:integer

Please note that the command should be
typed in one line.	

Let’s migrate the database, and test run
 rake db:migrate

and test run
 rails server

Open the WEB page with the following URL
 http://127.0.0.1:3000/guests
	

Now we obtain new ‘Mini Application’ to register guests.
The Front WEB page is given in app/views/guests/

index.html.erb.	

Sqlite3 database has been create in (project
directory) \db

Change directory to (project) \ db

 See if there is a file ‘development.sqlite3.’

Then, type command

 sqlite3 development.sqlite3

p  You will see the message that SQL statements should be
followed by ‘;.’

p  Enter ‘.help’ for Instruction.
p  Enter ‘.databases’ to get main database.	

p  Select * from guests; to see the contents of guests table.	

p Enter ‘.schema guests’ to see schema.	

p We did not specify ID of records during

the scaffolding and migration, but an “id”
field is generated.

p  It is especially important for “LINK.”	

n  If we write “guest_id”(Singular_id,) in other

tables, the field will mean the link to the
Guests table, to look up a record with the
given “ID” value.

For detail, connect rails documentation site:
 http://api.rubyonrails.org/
 and search for
 “ActiveModel::Validations::HelperMethods”

Open app/models/guest.rb file.
class class_name < Inherited_class
End

 is ruby description of Class definition.

 class Guest < ActiveRecord::Base
 attr_accessible :age, :login, :sex
 end

tells that the table Guest inherits
ActiveRecord::Base.

This is a framework which allows users to modify.
	

p  Open app/models/guest.rb file.
p  Then, add the following lines;

 validates :login, :presence => true
 validates :age, :presence => true
 validates :sex, :presence => true
 validates_inclusion_of :age, :in => 1..130
 validates_inclusion_of :sex, :in => 1..2

p  Validators are added to Active Record
p  ActiveRecord has an important roll to bridge

between database and controllers. 	

It should look like:

Validate :login, :presence => true

 tells that :login field require value.
Validate_inclusion_of :age, :in => 1..130

 tell that the value of :age should be within the
range from 1 to 130.	

Run server again
with validators.
Error Message will
appear.
Validators check the
existence of value,
range, and such.	

Review of the lesson of last week;
Open app/views/guests/index.html.erb file.
Modify String literals into ruby translation.
Ex. ‘Listing guests’ to
 <%= t :listing_guests %>

Then prepare :listing_guests symbol in both
ja.yml and en.yml file.
	

Modify
 app/views/guests/index.html.erb
 config/locales/ja.yml
 config/locales/en.yml

By adding /?locale=en or /?locale=ja,
 you can switch language environment.
	

p  Please scroll to below and see en.yml or
ja.yml. You will see
p  errors:messages:empty and such.

none	

We will learn Test Driven Development.	

