
Day 6: 24/May/2012

TDD (Test Driven Development)

p Understand what TDD (Test Driven
Development) is.
p  Understand the words related to the Test

Driven Development
p  Get used to the ‘Rails-Way’ of TDD

p We apply TDD to the “guests” table, which
we had generated last week, to get the
sketch of TDD.

p  Test Driven Development
p  Method, and the environment.

p One thing we should learn the most,

when we use Ruby on Rails environment.
p  On rails, it is so easy to use.

p We can obtain the highly-proved source
codes, also.

p http://guides.rubyonrails.org/testing.html

p We had written the code, run, and
checked with its actual runtime
environment.

P304, Kiso Ruby on Rails, Impress Japan, 2007	

p Create Test Environment First.	

P304, Kiso Ruby on Rails, Impress Japan, 2007	

It is often mentioned that RSpec is better
than original Testing Environment of Rails.

http://ruby.railstutorial.org/chapters/static-pages#sec:TDD

In this course, we use original Test Environment.

Because, I am not get used so much to explain RSpec,
but there is no other reason.
So, if you could, try to apply RSpec.
I may modify this course material to use RSpec.	

p We prepare “Test” before we start writing
programs.	

p We Test first before we write program, the

test should “Fail” and that proves the
“Test works properly.”

p Here the “Failure” is not an “Error”

p  Step 1: Write “Test”	
n  Make Specification Clear, and write “Test” according to how it

should work.

p  Step 2: Confirm it “fails” before writing program.

n  Prepare “Test Script” and execute test to prove it works before
writing programs. (Debug the test script.)

p  Step 3: Coding	

n  So that the program passes the test

p  Step 4: Refactoring	

n  Keep it passes the test, and clean the source code.

p On Rails, we use 3 databases.	
n  Open config/database.yml, and find

n  db/development.sqlite3
n  db/test.sqlite3
n  db/production.sqlite3

p  Type the following command,
 rake db:test:prepare

n  When it runed successfully, ‘test.sqlite3’ is
generated in db folder.

p  Unit　Test
n  If model ‘search’ methods obtained data properly,
n  If model ‘update’ methods obtained data properly,
n  If model ‘update’ methods showed error messages

properly against improper values.

p  Functional Test

n  If proper template was selected,
n  If proper values were stored into instance variables,
n  If rendered properly, or redirected properly,
n  If model ‘update’ actions updated database properly.

p  Integrated Test
p  All operations work properly.

p  Test related files are stored in test
directory.	

p See the file test/unit/guest_test.rb, which
had been generated automatically.	

require 'test_helper'
	

class GuestTest < ActiveSupport::TestCase
 test "the truth" do
 assert true
 end
end

p At the beginning, there is a test which will

success always. Let us un-comment the
test “the truth”.

p Assertion is to check if any condition were
true.
p  The ‘not null’ field is not empty.
p  The value is within the given range.

n  Perform test for only one file,

p  Type the following command
ruby –Itest test/unit/guest_test.rb

p  They are
Test, Assetions, Failures, Errors
n  Test：　Number of test methods	

n  Assertions: Number of Assertion methods.	
n  Failures: Number of Failed assertions.	
n  Errors： Number of bugs of test methods

description, database error, and such trouble
with test preparation.

p We have not written any program yet, so
the result must be NO failure, NO error.

p  If you face with error now, we can assume

the following reason.
You have not run
 rake db:test:prepare

yet, or development.sqlite3 had not been
created yet by the last class.

 You had not migrated yet.	

“Failure”:
l  Program failed to judge the abnormal data as

“unusual,” and tried to hand it in to database,
l  Give the “ordinary” data to the system, but the

system failed to recognize that the data had been
“normal.”

l  Both the case, we should decide that the there
were “mis-programming.”

“Error”
l  Either related file, Test data, and test

description itself may contain grammatical or
semantic error.

p Update	

test\unit\guest_test.rb	

n  Try to describe the “Perfect” test against the
data and system error.	

p Use the features data as default.	

p Remove all the errors from the result test
execution.

p Also, we finish installing all other tables
than guests.

Read about fixtures at http://
api.rubyonrails.org/classes/
ActiveRecord/Fixtures.html
	

one:
 login: koba@hosei.com
 age: 20
 sex: 1
	

two:
 login: yashi*hosei.or.jp
 age: 200
 sex: 2

	

three:
 login: iku+o@hosei@example.jp
 age:
 sex: 3
	

four:
 login:
 age: 5
 sex: 	
	

require 'test_helper'
	
class GuestTest < ActiveSupport::TestCase
 fixtures :guests
 test "the truth" do
 assert true
 end
 test "data should be valid" do
 reg = Regexp.new("^([a-zA-Z0-9_.%+-]+)@([a-zA-Z0-9.-]+?)(¥.[a-zA-Z0-9_.-]*)$")
 data = guests(:one)
 assert(data.valid?, "data one should be valid")
 assert_not_nil(data.login, "login of data one should be not nil")
 assert_match(reg, data.login, "data one login address should match.")
 assert_not_nil(data.age, "age of data one should be not nil")
 assert_not_nil(data.sex, "sex of data one should be not nil")
 data = guests(:two)
 assert_no_match(reg, data.login, "data two login address should not match.")
 assert(data.age<1 || data.age>130, "age of data two should be out of rang [1..130]")
 data = guests(:three)
 assert_no_match(reg, data.login, "data three login address should not match.")
 assert_nil(data.age, "age of data three should be nil")
 assert_not_nil(data.sex, "sex of data three should be not nil")
 assert(data.sex<1 || data.sex>2, "sex of data three should be out of range[1..2]")
 end
end

Assertion	 Purpose	

assert(boolean, [msg])!
Ensures that the object/expression
is true.	

assert_equal(obj1, obj2,
[msg])! Ensures that obj1 == obj2 is true.	
assert_not_equal(obj1,
obj2, [msg])! Ensures that obj1 == obj2 is false.	

assert_same(obj1, obj2,
[msg])!

Ensures that obj1.equal?(obj2) is
true.	

assert_not_same(obj1,
obj2, [msg])!

Ensures that obj1.equal?(obj2) is
false.	

assert_nil(obj, [msg])! Ensures that obj.nil? is true.	
assert_not_nil(obj,
[msg])! Ensures that obj.nil? is false.	

assert_match(regexp,
string, [msg])!

Ensures that a string matches the
regular expression.	

Assertion	 Purpose	

assert_no_match(regexp,
string, [msg])!

Ensures that a string doesn’t
match the regular expression.	

assert_in_delta(expecting,
actual, delta, [msg])!

Ensures that the numbers expecting
and actual are within delta of each
other.	

assert_throws(symbol,
[msg]) { block }!

Ensures that the given block throws
the symbol.	

assert_raise(exception1,
exception2, ...) { block }!

Ensures that the given block raises
one of the given exceptions.	

assert_nothing_raised(exce
ption1, exception2, ...)
{ block }!

Ensures that the given block
doesn’t raise one of the given
exceptions.	

assert_instance_of(class,
obj, [msg])!

Ensures that obj is of the class
type.	

Assertion	 Purpose	

assert_kind_of(class,
obj, [msg])!

Ensures that obj is or descends from
class.	

assert_respond_to(obj,
symbol, [msg])!

Ensures that obj has a method called
symbol.	

assert_operator(obj1,
operator, obj2, [msg])!

Ensures that obj1.operator(obj2) is
true.	

assert_send(array,
[msg])!

Ensures that executing the method
listed in array[1] on the object in
array[0] with the parameters of array[2
and up] is true. This one is weird eh?	

flunk([msg])!

Ensures failure. This is useful to
explicitly mark a test that isn’t
finished yet.	

We use assert_match() to check the email-
address using regular expression.

Regular Expression for mail address is
/^[a-zA-Z0-9_.%+\-]+@[a-zA-Z0-9.-]+?(\.[a-zA-Z0-9_.\-]*)$/

If our system do not allow using ‘%’ or ‘+’ in
mail address, the regular expression
would be

/^[a-zA-Z0-9_.\-]+@[a-zA-Z0-9.-]+?(\.[a-zA-Z0-9_.\-]*)$/

p  Type
ruby -I test test/unit/guest_test.rb

p When it passes, the result should be

0 failures, 0 errors.

Well, the result shown in the previous page was not
the result I had been expected.

Apparently, I should “debug” the regular expression

of mail address of
/^[a-zA-Z0-9_.%+\-]+@[a-zA-Z0-9.-]+?(\.[a-zA-Z0-9_.\-]*)$/

But… time out in preparing course material (this

file) for the lecture…
You, brilliant guys, please fix it and let me know.

Thanks in advance. The below is an useful page.
http://www.regular-expressions.info/email.html

	

p While Unit Test was to test the Model part,
Functional Test is to check the controller
part.

p When we generate scaffold, under test/
functional/ directory,
p  XXXXX_controller_test.rb is generated.

Let see, guests_controller_test.rb

p Automatically Generated Test	

What is Rendering?
•  When a template is chosen by “Action”,

values from controllers are embedded in
HTML source code. This is “rendering”.

What is Redirection?
•  Force to show new URL	

In Functional Test, presences of parameters
and validity of values are checked, before
they are embedded in html.

	

p  It requires the total flow description, such
as “login à update database à logout,” so
integration test cannot be generated
automatically.

p  Type
 rake test

none	

We will learn Database Access via model.

We will write codes to describe relational

links between tables, for the Problem
Solving Engine.

