
Day 7: 31/May/2012 
 

CRUD of Database 



p  By testing each of the database 
operations: CRUD, both via the Web 
screen and through SQL commands, we 
deepen the knowledge on SQL. 

p  It was my translation, and I guess, sometimes 
automatic translator may generate the better 
translation than a man. 



Solved! Thanks to you, folks! 
 
I have received mail message, that 
"^([a-zA-Z0-9_.%+-]+)@([a-zA-Z0-9.-]+?)(\\.[a-zA-Z0-9_.-]*)$” 

worked fine. Yes, it actually worked. 
He mentioned that, “iku+o@hosei%example.jp” was not 

rejected, so he doubted that ‘\.’ must have been 
recognized as ‘.’. 

I do not think it was the fault of expression.  
It makes sense. Inside ‘[]’, ‘.’ does not have the 

meaning of any character. But if ‘\.’  recognized 
as ‘.’, it could be matched to ‘%’ or ‘@’.  



In information from the student, he mentioned that 
he had found the related article below;	


http://jp.rubyist.net/magazine/?0019-BundledLibraries  
(Japanese) 

The problem seems to be “Somebody had eaten ‘\.’  
And until we try, we can hardly know how many 
backslashes we should write. The conclusion is 
that we should perform tests in the ‘product’ 
environment.  

Any way, I appreciate very much. 
	




1.  Receive REQUESTS from browsers, 
2.  Handle parameters in the specified 

method, and access to the database, 
3.  Retrieve information from the database, 

and render it to html file. 
4.  Send RESPONSE to browsers. 	




Today we learn what part in 
the project files we should 
write the program for 
each steps. 

 
WEB Browser	


 
WEB Server	


 
WEB Application	


 
Database	


 
HTML	


1	


4	


2	


4	


3	


3	




Type ‘rake routes,’ in the project directory.  
It should show the method names for html 

requests.	




We should specify the following two lines in config/
routes.rb. (automatically generated) 
 resources :guests 
 resources :problems	




HTML files containing form tags may send a 
request to server, according to the form 
element’s attribute. 

Method attribute specifies “method,” and 
Action attribute specified “program.” 
 



We scaffold two tables; 
 guests and problems. 

So we have two programs; 
guests and problems. 

Of course, we can add new 
program manually to the 
projects, but by 
combining those 
programs, we extend the 
system. 	




layouts/application.html.erb. 
In <%= yield %> part,  
views/guests/foo.html.erb for ‘guests’ program, or 
views/problems/foo.html.erb for ‘problems’ program is 

embedded.  
Index.html.erb is a  

rather simple file,  
so let us see  
new.html.erb. 

	




File ‘new.html.erb’ is simple. 
It has only three lines. 
 
In <%= render ‘form’ %> part, 
_form.html.erb is embedded. 
 
	






Following methods are available for rails  
Form block; 

 check_box, convert_to_model, email_field  
 fields_for, file_field, form_for, hidden_field  
 label, number_field, password_field,  
 phone_field, radio_button, range_field  
 search_field, telephone_field,  
 text_area, text_field, url_field  

See: 
http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html 

in detail	






When we write rails methods for form 
elements, e.g. 
 <%= f.number_field :age %>    line 20 in _form.html.erb 

   This statement is rendered to 
   <input id="guest_age" name="guest[age]" type="number" /> 

  in html file on the client browser, as the 
‘form_for’ iterator part is for ‘guest’;  

  <%= form_for(@guest) do |f| %>   line 1 in _form.html.erb 
 
	




we can see the following console message, 
when we click the [Register](submit) 
button.  Here POST method is sent to  
‘/guests’ program. 



POST methods for ‘/guests’ is handled in app/
controllers/guest_controller.rb with create 
method, as is seen in  
   POST  /guests(.:format)  guests#create 

 message replied to ‘rake routes’ command. 



In the first line of ‘create’ method in 
guest_controller.rb file, ‘new’ method of 
Guest class is called with an argument of 
‘:guest’ hash data. 

But we can not see any ‘new’ method for 
class Guest in the file ‘app/models/
guest.rb.’ Here, default new method for 
ActiveRecord::Base is called. 

We can use default accessors with; 
  attr_accessible :age, :login, :sex 	




With this Guest.new method, the following 
SQL command is submitted to the 
database.	




The following ruby expression is processed, 
seen in ‘create’ method in GuestController 

 respond_to do |format| 
      if @guest.save 
        format.html { redirect_to @guest, :notice => 'Guest was successfully created.' } 
        format.json { render :json => @guest, :status => :created, :location => @guest } 
      else 
        format.html { render :action => "new" } 
        format.json { render :json => @guest.errors, :status => :unprocessable_entity } 
      end 
    end 

If default ‘save’ method was successful, the 
result is redirected to ‘show’ method, 
because the URL of redirection is for a 
record(@guest), and this is converted to ‘/
guest/id’ 



Recirect_to cause browser level redirection, 
i.e. ‘external’ redirection. 

When the redirection is for 
 Hash - The URL will be generated by 
  calling url_for with the options. 
 Record - The URL will be generated by 
  calling url_for with the options,  
  which will reference a named URL  
  for that record. 

See: http://api.rubyonrails.org/classes/ActionController/Redirecting.html	




This can be recognized as, 
 redirect_to :action => “show”, :id => nn 
  (where nn is @guest.id,) and it is a 
browser level “request” redirection. 

GET /guest/:id   is for guests#show 
 



Show method of GuestController calls ‘find’ method of Guest 
class.  This method will be translated into SQL as, 
  Select * from guests where id=‘:id’; 

Then, the result will be handed to show.html.erb. 
If we see the following ‘successfully created’ message, it 

means that the data had been written to the database, and 
read from the database. 

 
	




we have traced. 

 
WEB Browser	


 
WEB Server	


 
WEB Application	


 
Database	


 
HTML	


1	


4	


2	


4	


3	


3	




For today’s practice, we should extend the 
Problem Solving Engine, a little bit. 

Add ‘cause’ table, and ‘solution’ table for 
PSE. 

Add mutual link between ‘causes-problem’, 
and ‘problem-solutions.’	




Essential Cause should be “Facts.” 
Cause 
 should have a field of ‘fact’ (text,)  
 a counter for pro (integer,) 
 a counter for con (integer,) 
 and a link to the solution (link.) 
	




Type the following command, 
 rails g scaffold cause fact:text pros:integer cons:integer 

	




Solution is an “Action.” 
Solution 
 should have a field of ‘action’ (text,) 
 a counter for pro (integer,) 
 a counter for con (integer,) 
 and a link to the solution (link.) 
	




Type the following command, 
 rails g scaffold solution action:text pros:integer cons:integer 

	




Design Concept: 
Problems table and Causes table could have many 

to many relations.  Because, one ‘cause’ may 
raises many problems, and one problem may be 
raised by many causes. 

But, ‘Solution’ to solve the ‘Cause’ for certain 
problem may differ from the solution to another 
problem even if the cause may be the same.  

So we design Problem-Cause relation as 
“one to many” relation. 

	




One ‘Cause’ belong to only one ‘Problem,’  
One ‘Problem’ may have many ‘Causes.’  
 
To ‘Cause’ model, set 
 belongs_to :problem 

and, to Problem model, set 
 has_many :causes 
	




To modify app/models/cause.rb, add 
 belongs_to :problem 

 
To modify app/models/problem.rb, add 
 has_many :causes 
	




Let ‘Cause’ point one ‘Problem,’ add one field ‘:problem_id’ of 
integer. 

 
Because id field is automatically added by rails, and its type is 

‘integer.’ 
 
Add one line 

 t.integer :problem_id 
In 2012MMDDHHmmSS_create 

_causes.rb migration file. 
 



Type 
 rake db:migrate 

To migrate the database. 
	




Go to db directory, and type  
 sqlite3 development.sqlite3 

Then, type sqlite3 command 
 .schema causes 

Now we can see what table is created in the 
database. 
	




We are now designing PSE, Problem Solving 
Engine.  In order to proceed this project, 
we need to bind ‘guest’ account to the 
problems table, causes table, and 
solutions table, to record who had written 
these wisdoms (and/or garbage.) To bind 
guests table, we introduce ‘Login 
Authentication’ next week. 

 


