OBJECT ORIENTED WEB
PrRoGRAMMING USING RuBy

Day 7: 31/May/2012

CRUD of Database

Today’s Goal (From syllabus)

O By testing each of the database
operations: CRUD, both via the Web
screen and through SQL commands, we
deepen the knowledge on SQL.

O It was my translation, and I guess, sometimes
automatic translator may generate the better
translation than a man.

Mail Address Regular Expression

Solved! Thanks to you, folks!

I have received mail message, that

"A([a-zA-Z0-9_.%+-]+)@([a-zA-Z0-9.-]+?)(\\.[a-ZA-Z0-9_.-]*)$"
worked fine. Yes, it actually worked.

He mentioned that, “iku+o@hosei%example.jp” was not

rejected, so he doubted that '\.” must have been
recognized as '.".

I do not think it was the fault of expression.

It makes sense. Inside '[]/, '.” does not have the
meaning of any character. But if '\.” recognized
as '.’, it could be matched to ‘%’ or '@".

Who parses “\’?

In information from the student, he mentioned that
he had found the related article below;

http://jp.rubyist.net/magazine/?0019-BundledLibraries

(Japanese)

The problem seems to be "Somebody had eaten *\.’
And until we try, we can hardly know how many
backslashes we should write. The conclusion is

that we should perform tests in the ‘product’
environment.

Any way, I appreciate very much.

Web Programming Basics

1. Receive REQUESTS from browsers,

2. Handle parameters in the specified
method, and access to the database,

3. Retrieve information from the database,
and render it to html file.

4. Send RESPONSE to browsers.

Rough Sketch of the Flow

Today we learn what part in
the project files we should
write the program for
each steps. @ @

> - >
WEB Browser WEB Server WEB Application
= 4

routing

Type ‘rake routes,’ in the project directory.

It should show the method names for html
requests.

kobayashi-ikuo-no-MacBook:spielberg kobayashi$ rake routes

guests GET /quests(.:format) guests#index
POST /quests(.:format) guests#create
new_guest GET /quests/new(.:format) guests#new
edit_guest GET /quests/:id/edit(.:format) quests#edit
guest GET /quests/:id(.:format) guests#show
PUT /quests/:id(.:format) guests#update
DELETE /quests/:id(.:format) guests#destroy
problems GET /problems(.:format) problems#index
POST /problems(.:format) problems#create
new_problem GET /problems/new(.:format) problems#new
edit_problem GET /problems/:id/edit(.:format) problems#edit
problem GET /problems/:id(.:format) problems#show
PUT /problems/:id(.:format) problems#update
DELETE /problems/:id(.:format) problems#destroy

kobayashi-ikuo-no-MacBook:spielberg

kobayashi$ [

To get this routing table,

We should specify the following two lines in config/
routes.rb. (automatically generated)

resources :guests
resources :problems

bpielberg::Application.routes.draw do
: 2 resources
» @ Local Filesystem =
v £ spielberg :
» & app
v & config
» B environments

» B initializers

resources

» & locales
a application.rb
a boot.rb
ﬁ database.yml
a environment.rb

; routes.rb

» & db

HTML form tag

HTML files containing form tags may send a
request to server, according to the form
element’s attribute.

Method attribute specifies "method,” and
Action attribute specified “program.”

How many programs do we run?

;

&

We scaffold two tables; B
guests and problems. el

So we have two programs; s
guests and problems. > 85 stylesheets

Of course, we can add new [E:’n"%"

program manually to the
projects, but by

a guest.rb
* 2 problem.rb

combining those v e
! uests

programs, we extend the BT
» & problems

system. o

& db
s doc
& lib
& log

Top most HTML file is

layouts/application.html.erb.
In <%= yield %> part,
views/guests/foo.html.erb for ‘guests’ program, or

views/problems/foo.html.erb for ‘problems’ program is
em bedded . 3- App Explorer | L[Project Explorer 23 = O ||#®'| application.htmlerb £3 | @] _forr

= & @8- 7
. b # Local Filesystem :
Index.html.erb is a 88 spidbers s
. . v & app <%= stylesheet_link_t
rather simple file, o s R

» B javascripts

so let us see paribo

» s controllers

new.html.erb. - & helpers

& mailers

¥ 5 models
aguest.rb
n problem.rb
Vv 5 views
» B guests
" B layouts
aappllcatlon.html.erb

I E proems

New.html.erb to form.html.erb

File 'new.html.erb’ is simple. [g
It has only three lines.

In <%= render ‘form’ %> part,
_form.html.erb is embedded.

_form.html.erb

<%= form_for(@guest) do |f]l %
<% if iest.errors.any? %
< "error_explanation”>
><¥%= pluralize(@guest.errors.count, "error") % prohibited this guest from being saved:<

<% ~ .errors. full_messages.each do | | %
<¥= msg %><
<% end %>

<% end %>

"field">
<%= f.label (t
<%= f.text_field :

"field">
.label (t :) %< />
.number_field %>

"field">
.label (t) %< />
.number_field : %>

"actions">

.submit %>

do |f]|, f contains ‘form’ parts

Following methods are available for rails

Form block;
check_box, convert_to_model, email_field
fields_for, file_field, form_for, hidden_field
label, number_field, password_field,
phone_field, radio_button, range_field
search_field, telephone_field,
text_area, text_field, url_field

See:

http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html

in detail

Generated html code for form tag

<form accept-charset="UTF-8" action="/guests" class="new_guest"
id="new_guest” method="post">
<div style="margin:0;padding:0;display:inline">
<input name="utf8" type="hidden" value="✓" />
|<input name="authenticity_token" type="hidden" value="Jt2zSy/6c2U/AEE4YY2ttGQMRTIxG+GgcP5|j8mB4/M=" />
</div>

<div class="field">
<label for="guest_0O 4/ 4 /ID">A 44 »id</label>

<input id="guest_login" name="guest[login]" size="30" type="text" />
</div>
<div class="field">
<label for="guest_F#">%E i </label>

<input id="guest_age" name="guest[age]" type="number" />
</div>
<div class="field">
<label for="guest_1%£5I">t45l</label>

<input id="guest_sex" name="guest[sex]" type="number" />
</div>
<div class="actions">
<input name="commit" type="submit" value="2§79 5" />
</div>
</form>

Methods for form tags

When we write rails methods for form
elements, e.q.

<%= f.number_field :age %> line 20 in _form.html.erb

This statement is rendered to

<input id="guest_age" name="qguest[age]" type="number" />

in html file on the client browser, as the
‘form_for’ iterator part is for ‘guest’;

<%= form_for(@guest) do |f| %> line 1 in _form.html.erb

When we submit page,

we can see the following console message,
when we click the [Register](submit)
button. Here POST method is sent to
‘/guests’ program.

Started "/quests" for 127.0.0.1 at Tue May :122:25 +0900 2012

Processing by GuestsController#create as HTML
Parameters: {"commit"=>"Z 9T 5", "utf8"=>",", "guest"=>{"age"=>"73", "login"=
>"who_am_i@example.jp", "sex"=>"1"}, "authenticity_token"=>"Jt2zSy/6c2U/AEE4YY2tt
GQMRT IxG+GgcP51j8mB4/M=""}
(6.1ms) begin transaction
SOL (32.6ms) INSERT INTO "guests" ("age", "created_at", "login", "sex", "updat
ed_at") VALUES (?, ?, ?, ?, ?) [["age", 73], ["created_at", Mon, 28 May 2012 23:
22:25 UTC +00:00], ["login", "who_am_i@example.jp"], ["sex", 1], ["updated_at", M
on, 28 May 2012 23:22:25 UTC +00:00]]
(58.3ms) commit transaction
Redirected to http://127.0.0.1:3000/guests/5
Completed 302 Found in 98ms (ActiveRecord: 91.9ms)

Receiving HTML REQUEST

POST methods for ‘/guests’ is handled in app/
controllers/guest_controller.rb with create
method, as is seen in

POST /guests(.:format) guests#create
message replied to ‘rake routes’ command.

def
= Guest.new(params[1D

respond_to do | |
if .save
format.html { redirect_to

format.json { render -
else
format.html { render
format.json { render
end
end
end

Guest.new(params|:guest])

In the first line of ‘create’ method in
guest_controller.rb file, ‘new’” method of

Guest class is called with an argument of
‘:guest’ hash data.

But we can not see any 'new’ method for
class Guest in the file ‘app/models/
guest.rb.” Here, default new method for
ActiveRecord::Base is called.

We can use default accessors with;
attr_accessible :age, :login, :sex

Database Access

With this Guest.new method, the following
SQL command is submitted to the
database.

Started POST "/guests" for 127.0.0.1 at Tue May 29 08:22:25 +0900 2012
Processing by GuestsController#create as HTML

Parameters: {"commit"=>"&	 5", "utf8"=>",", "guest"=>{"age"=>"73", "login"=
>"who am 1@example jp", "sex"=>"1"}, "authenticity_token"=>"J]t2zSy/6c2U/AEE4YY2tt

(0. lms) begln transaction
SOL (23.6ms) INSERT INTO "guests" ("age", "created_at", "login", "sex", "updat
ed_at") VALUES W‘?‘?‘ﬁ‘l‘f"ﬁ“’ 731, [“"created_at", Mon, 28 May 2012 23:
22:25 UTC +00:00], ["login", "who_am_i@example.jp"], ["sex", 1], ["updated_at", M

on, 28 May 2012 23:22:25 UTC +00:00]]
commlt transactlon

When it is committed,

The following ruby expression is processed,
seen in ‘create’ method in GuestController

respond_to do |format]|
if @guest.save
format.html { redirect_to @guest, :notice => 'Guest was successfully created.' }
format.json { render :json => @guest, :status => :created, :location => @guest }
else
format.html { render :action => "new" }
format.json { render :json => @guest.errors, :status => :unprocessable_entity }
end
end

If default ‘save’ method was successful, the
result is redirected to ‘show’ method,
because the URL of redirection is for a
record(@guest), and this is converted to '/
guest/id’

Redirect to with Record

Recirect_to cause browser level redirection,
I.e. ‘external’ redirection.

When the redirection is for

Hash - The URL will be generated by
calling url_for with the options.

Record - The URL will be generated by
calling url_for with the options,
which will reference a named URL
for that record.

S ee. http://api.rubyonrails.org/classes/ActionController/Redirecting.html

Redirect_to (@guest

This can be recognized as,
redirect_to :action => “show”, :id => nn

(where nn is @guest.id,) and it is a
browser level “request” redirection.

GET /quest/:id is for guests#show

Started) GET "/quests/5"|for 127.0.0.1 at Tue May 29 08:22:25 +0900 2012

Processing by GuestsController#show as HTML
Parameters: {"id"=>"5"}

. SELECT "quests".x FROM "quests" WHERE "quests"."id" = ? LIM

IT-‘i - lliall' ‘ I.I.SI_I =
Rendered guests/show.html.erb within layouts/application (1.3ms)
Completed 200 OK in 2@0ms (Views: 17.5ms | ActiveRecord: 0.3ms)

‘show’ method in GuestController

Show method of GuestController calls ‘find” method of Guest
class. This method will be translated into SQL as,

Select * from guests where id=":id’;
Then, the result will be handed to show.html.erb.

If we see the following ‘successfully created’ message, it
means that the data had been written to the database, and
read from the database.

Guest was successfully created.

Login: who_am_i@example.jp 15 def
16 = Guest.find(params[:id])
Age: 73 17
18 respond_to do | |
. 19 format.html
Sex: 1 20 format.json { render
21 end

Edit | Back 22 end

Once again, this is what

we have traced.

Database

2 O

> - >
WEB Browser WEB Server WEB Application
= 4

Now let’s extend PSE

For today’s practice, we should extend the
Problem Solving Engine, a little bit.

Add ‘cause’ table, and ‘'solution’ table for
PSE.

Add mutual link between ‘causes-problem’,
and ‘problem-solutions.’

Table Design for [Causes]

Essential Cause should be “Facts.”
Cause
should have a field of ‘fact’ (text,)
a counter for pro (integer,)
a counter for con (integer,)
and a link to the solution (link.)

Scaffolding ‘cause’ table

Type the following command,

rails g scaffold cause fact:text pros:integer cons:integer

kobayashi-ikuo-no-MacBook:spielberg kobayashi$ rails g scaffold cause fact:text prE
os:integer cons:integer
active_record
create db/migrate/20120529073626_create_causes.rb
create app/models/cause. rb

test_unit
create test/unit/cause_test.rb
create test/fixtures/causes.yml

route resources :causes
scaffold_controller
create app/controllers/causes_controller.rb

erb
create app/views/causes
create app/views/causes/index.html.erb
create app/views/causes/edit.html.erb
create app/views/causes/show.html.erb
create app/views/causes/new.html.erb
create app/views/causes/_form.html.erb
test_unit
create test/functional/causes_controller_test.rb
helper
create app/helpers/causes_helper.rb
test_unit
create test/unit/helpers/causes_helper_test.rb
assets
coffee
create app/assets/javascripts/causes. js.coffee
SCSS
create app/assets/stylesheets/causes.css.scss
scss

identical app/assets/stylesheets/scaffolds.css.scss
kobayashi-ikuo-no-MacBook: spielberg kobayashi$ I

Table Design for [Solution]

Solution is an “Action.”
Solution
should have a field of ‘action’ (text,)
a counter for pro (integer,)
a counter for con (integer,)
and a link to the solution (link.)

Scaffolding ‘Solutions’ table

Type the following command,

rails g scaffold solution action:text pros:integer cons:integer

kobayashi-ikuo-no-MacBook: spielberg kobayashi$ rails g scaffold solution action:te
xt pros:integer cons:integer
active_record
create db/migrate/20120529074011_create_solutions.rb
create app/models/solution. rb

test_unit
create test/unit/solution_test.rb
create test/fixtures/solutions.yml

route resources :solutions
scaffold_controller
create app/controllers/solutions_controller.rb

erb
create app/views/solutions
create app/views/solutions/index.html.erb
create app/views/solutions/edit.html.erb
create app/views/solutions/show.html.erb
create app/views/solutions/new.html.erb
create app/views/solutions/_form.html.erb
test_unit
create test/functional/solutions_controller_test.rb
helper
create app/helpers/solutions_helper.rb
test_unit
create test/unit/helpers/solutions_helper_test.rb
assets
coffee
create app/assets/javascripts/solutions.js.coffee
scss
create app/assets/stylesheets/solutions.css.scss
scss

identical app/assets/stylesheets/scaffolds.css.scss
kobayashi-ikuo-no-MacBook: spielberg kobayashi$ [

Link from Problem to Cause

Design Concept:

Problems table and Causes table could have many
to many relations. Because, one ‘cause’ may

raises many problems, and one problem may be
raised by many causes.

But, 'Solution’ to solve the ‘Cause’ for certain
problem may differ from the solution to another
problem even if the cause may be the same.

So we design Problem-Cause relation as
“one to many” relation.

For One to Many relation

One ‘Cause’ belong to only one ‘Problem,’
One ‘Problem’ may have many ‘Causes.’

To 'Cause’ model, set
belongs_to :problem

and, to Problem model, set
has_many :causes

Modify Models

To modify app/models/cause.rb, add
belongs_to :problem

To modify app/models/problem.rb, add
has_many :causes

attr_accessible
belongs_to

attr_accessible
has_many

Add one column to ‘Cause’

Let ‘Cause’ point one ‘Problem,’ add one field ‘:problem_.id’ of
integer.

Because id field is automatically added by rails, and its type is
‘integer.’

Add one line
t.integer :problem_id .

In 2012MMDDHHMmMSS_create . [t
_causes.rb migration file. ; t.integer

t.integer

t.integer

t.timestamps
end
end
IS end

When we finish adding links,

Type
rake db:migrate
To migrate the database.

kobayashi-ikuo-no-MacBook:spielberg kobayashi$ rake db:migrate

== (reateCauses: migrating

—— create_table(:causes)
-> 0.0351s

== C(reateCauses: migrated (0.0355s)

== (reateSolutions: migrating

—— create_table(:solutions)
-> 0.0025s

== C(CreateSolutions: migrated (0.0033s)

kobavashi-ikuo-no-MacBook:spielbera kobavashi$ N

Let us see cause table

Go to db directory, and type
sglite3 development.sqglite3
Then, type sqglite3 command
.Schema causes
Now we can see what table is created in the

database.

kobayashi-ikuo-no-MacBook:spielberg kobayashi$ cd db

kobayashi-ikuo-no-MacBook:db kobayashi$ 1s

development.sqlite3 schema. rb test.sqlite3

migrate seeds.rb

kobayashi-ikuo-no-MacBook:db kobayashi$ sqlite3 development.sqlite3

SQLite version 3.7.11 2012-03-20 11:35:50

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .schema causes

CREATE TABLE "causes" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, "fact" tex
t, "pros" integer, "cons" integer, "problem_id" integer, "created_at" datetime NOT
NULL, "updated_at" datetime NOT NULL);

sqlite> .exit

kobayashi-ikuo-no-MacBook:db kobayashi$ [

Prepare for the Next Week

We are now designing PSE, Problem Solving
Engine. In order to proceed this project,
we need to bind ‘guest’ account to the
problems table, causes table, and
solutions table, to record who had written
these wisdoms (and/or garbage.) To bind
guests table, we introduce ‘'Login
Authentication’” next week.

