
Day 9: 14/June/2012

Table Structure

p  Relational structure of tables are studied
so that students could construct the
database with complicated data
architecture.

p  ‘Complicated Architecture?’
I do not think so, but, this is the basis of constructing
the large scale system.
I should have written as ‘data architecture with many
associated factors.’

At the beginning, I had written the
instruction as to remove the following line
in the file layouts/application.html.erb.

 <%= javascript_include_tag "application" %>
Please resurrect this line, instead, remove

the following file.
　app/assets/javascripts/*.js.coffee

This will allow us destroy the record, and

sign out from the system.

‘Rails’ is a very aggressive platform to intake every useful
concepts and technologies, even many supporters seem
to complain to stay conservative. It is really tough to
keep in touch with the latest rails specification to
proceed this course lecture. As an old programmer, I
myself want to stay in a stable environment without any
stimulating progressive technology, however, the course
students are young engineers who may change the
future computer technology. So, I would surely make
mistakes in the future, but I dare try to intake the latest
technology in this course.

Students, please learn from my mistakes. I will try to
explain how I have made mistakes, and what I should
have done with those new technologies.	

CoffeeScript had become a standard
scripting factor of rails from version 3.1.

CoffeeScript is a language to generate
JavaScript. (I understand) CoffeeScript
and JavaScript are the same as ‘scss’ and
‘css.’

Rails tends to intake the language with
much simple, structured and short
expression to generate other language
source. (Personally, I like this attitude.)	

With the installation instruction I had
provided for the course, might have not
been sufficient for this course, especially
with Cygwin on Windows.

I should have added (probably one) another
command to support CoffeeScript, I guess.

For the lecture of this semester, please

forget about CoffeeScript. 	

<h1>Listing problems</h1>
	
<table>
 <tr>
 <th>Title</th>
 <th>Content</th>
 <th></th>
 <th></th>
 <th></th>
 </tr>
	
<% @problems.each do |problem| %>
 <tr>
 <td><%= problem.title %></td>
 <td><%= problem.content %></td>
 <td><%= link_to 'Show', problem %></td>
 <td><%= link_to 'Edit', edit_problem_path(problem) %></td>
 <td><%= link_to 'Destroy', problem, :confirm => 'Are you sure?', :method => :delete %></td>
 </tr>
<% end %>
</table>
	

	
<%= link_to 'New Problem', new_problem_path %>

	

This ‘@problem’ is from controllers
method ‘index.’ 	

We want to add link
here.	

Today’s first link is from
‘Problems#index’ (top screen) to register
‘new Causes.’

Here, we want to hand a parameter
‘problem_id’ (primary key number) to
the new method of ‘causes’ controller.

	

When it is linked to ‘new_cause_path,’
‘causes’ controller is called at the method
‘new.’

New record @cause is created, and this
parameter is handed to new.html.erb.
	

Add one line
 match 'causes/new(/:problem_id)', :to => 'causes#new'

:product_id is an optional parameter, so

round brackets should be put around the
parameter name.
	

At app/views/problems/index.html.erb,
add the following line;

 <td><%= link_to 'Register Cause', :controller => :causes,
 :action => :new, :problem_id => problem.id %></td>

Here, if there were no necessity to hand :problem_id
parameter, just ‘new_cause_path’ had been fine, like

 <td><%= link_to 'Register Cause', new_cause_path %></td>

	

Root screen has become as the following;	

Add one line in the ‘new’ method of causes
controller,
app/controllers/causes_controller.rb

 @cause.problem = Problem.find(params[:problem_id])	

Cause.new generated new Cause instance,
and this instance was given the relation to
Problem with
Problem.find(params[:problem_id])

Now we can refer the the Problem instance
by writing cause.problem.	

Modify the headings as;
<h1>Register New cause</h1>
<h3>for the Problem:
<%= @cause.problem.title %>
</h3>

	

	

Now when we click the ‘Register Causes’
link, we can see the following screen.	

Originally, the file was as the following;
Now the attribute :pros and :cons should be

counters and start with 0, so remove
those fields, and
shrink the size of
:fact field to
“60x5.”

Also, we add one line
 <%= f.hidden_field :problem_id, :value => @cause.problem.id %>

	

After the modification, the file is now as 	

to set the value to problem_id, modify
app/models/cause.rb

Add the following to attr_accessible;
 :problem_id

‘New’ method is executed in the server, and html is
handled in the client browser. Then the form
input was handed to the ‘create’ method in the
server.

When we test run the program only on our
computer, we cannot notice that the protocol
message goes to the browser and comes back
from the browser.

So, if we want to initialize parameter, we need to
do in in the ‘create’ method, or let the parameter
go and back in the hidden field.

	

Add two lines;
 @cause.pros = 0
 @cause.cons = 0

	

Is now like	

‘causes’ table’s original index screen was as
the following;	

In the Causes index(list) screen, we want to
see only the causes records related to the
specified problems.

If not so, the following problems would
occur.
	

Sample	

Problematic
Causes screen.	

To replace index of causes controller related
with specific problem, first modify
config/routes.rb

Add one line;
 match 'causes/index(/:problem_id)', :to => 'causes#index'

	

Modify
app/views/problems/index.html.erb

Add one (logical) line;
 <td><%= link_to 'List Causes', :controller => :causes,
 :action => :index, :problem_id => problem.id %></td>

	

Modify
app/controllers/causes_controller.rb

Add two lines;
 @causes = Cause.find_all_by_problem_id(params[:problem_id])
 @problem = Problem.find(params[:problem_id])

Modify
app/views/causes/index.html.erb

Modify headings;
<h3>

 of the problem: <%= @problem.title %>
</h3>

And then, remove
link to new_cause_path, (because, create a cause
should always be with ‘problem_id,’ so, let it go
back the top.	

<%= link_to 'back', problems_path %>

better, just like;

	

Finish the relationship design between
Problems and Causes.

Then, do the similar modification to the

relationship between Causes and
solutions, to introduce the solutions
screen.	

Modify the code to design the causes-
solutions relationship screen, and report
the code and screens, in English.

Also, there are several points that may

cause the crash of the system.
(The modification is not completed yet.)
Please point out the problem of the program

and report those.	

In today’s modification, we did not care for
the guest who added the new record.

So, we add the link field to guests in all
tables to record the guests, and allow only
the guests who added to remove the
problems, causes and/or solutions.

Change the views depending on the guests.
Also, add ‘pros’ and ‘cons’ buttons for guests

to vote. If once a guest voted, display the
screen with the mark on ‘pros’ or ‘cons’ for
his screen.

