
Day 10: 21/June/2012

Personalization

p  This topics was not included in the
original syllabus. It was arranged because
of the following two reasons;
p  To fit the higher requirement level of the

course attendants’ potentials.
p  To complete the installation of the ‘project.’

p When Database application runs on the
WEB, the screen view is often arranged for
each user. We learn this arrangement as
personalization.

http://www.slideshare.net/forakerdesign/web-content-personalization-three-case-
studies

We support the following two points;

1.  One guest can vote only once for one

topic.
2.  Guest can see what he voted, and can

change his/her vote watching others
votes.

Now we introduce ‘votes’ table.
 Previously, our table design was assisted
by rails’ ‘scaffolding’ support, and the
generated skeleton was enough to
maintain the data and enough to show the
contents.

The behavior of ‘votes’ is different.
 One record is added when a guest votes
for any topic, and this is the only way to
add a record to ‘votes’ table.

 	

However, the scaffold structure is helpful
enough to maintain the record, for the
administration purpose.

So, first we scaffold the votes table, and
then, add ‘vote buttons’ to the view, add
an action method to ‘vote’ to the model,
and add ‘indicator’ to show which side the
guest voted.

Field Design
•  Id, the primary key,
•  Guest_id (user_id), to record who voted,
•  Vote, to record pros(1) or cons(0),
•  Causes_id, to record the topic, or
•  Solution_id, to record the topic.

To simplify the design, it would be better to
have two ‘votes’ tables, ‘cause_votes’ and
‘solution_votes.’ I will adopt this ‘two
votes table design.’	

I am very sorry that the coding is on the way, and I have not
finished yet…

I put all my design plan on these slides, and explain what to
do with the design as description.

Probably, I will show the program code writing cold, without
any rehearsal…

Please, you yourself try to complete the design.
For me, ‘Time-Out.. (Game Over)’ for today. But the game is

not over yet. I keep on writing source codes, and show the
completed version source code to the public by all means.	

Relations to guests, causes, and solutions
tables are needed.

rails generate scaffold causeVote guest_id:integer vote:integer

cause_id:integer

rails generate scaffold solutionVote guest_id:integer vote:integer

solution_id:integer

And then, migrate
 rake db:migrate	

Put ‘Pro’ and ‘Con’ button on the list(index)
screen of the Causes/Problems views.

We should write ‘form_tag’ block to both
index.html.erb file.

When either button is pressed, send a
method(POST) to the causes_controller.rb
or solutions_controller.rb, with a
parameter either ‘Pro’ or ‘Con.’
	

Add one line below to config/routes.rb.
 match 'causes/vote(/:cause_id)' => 'causes#vote’

To avoid the following Routing Error, and
then add ‘vote’ method to the
causes_controller.rb.	

<% @causes.each do |cause| %>
 <tr>
 <td><%= cause.fact %></td>
 <td><%= cause.pros %></td>
 <td><%= cause.cons %></td>
 <td><%= link_to 'Show', cause %></td>
 <td><%= link_to 'Edit', edit_cause_path(cause) %></td>
 <td><%= link_to 'Destroy', cause, :confirm => 'Are you sure?', :method => :delete %></td>
 </tr>
 <tr>
 <td></td>
 <%= form_tag "/causes/vote/"+cause.id.to_s do %>
 <%= tag :input, { :type => 'hidden', :name => 'problem_id', :value => @problem.id } %>
 <td>
 <%= submit_tag 'Pro', :name =>'Pro' %>
 </td>
 <td>
 <%= tag :input, { :type => 'submit', :name => 'Con', :value => 'Con' } %>
 </td>
 <% end %>
 </tr>
 </tr>
<% end %>	

Please note, that if you copy text from my
slides, sometimes, the PowerPoint
converts single quotation to special ‘’
letters, and if you leave them, it may
cause errors. 	

I have added two ways to install button.
You can try either way, (because, it is very

annoying if there are two different coding styles
mixed.)

Also, the html is handed a parameter ‘Problem’
Class instance, and we may need to hand those
parameters back to the controllers.
 (The other way is to set it to ‘global’ variable, but
it may cause some trouble when it runs on multi-
thread environment.)	

We did not hand the Problem_id to causes/
index, so when we click ‘BACK’ button, the
following error occurred.	

Voting result screen has been handed three
variables, @causes(hash), @cause(Cause class
instance), and @problem(Problem class
instance).

We should rewrite the following line
 <%= link_to 'Back', causes_path %>

to hand @problem.id, to the causes/index path.
1) Use link_to, and rewrite URL,
 <%= link_to 'Back', '/causes/index/'+@problem.id.to_s %>

2) Use Button to hand parameter as a hidden input.	

Just remember, you modified routes.rb.
Also, check routes’ names by typing ‘rake

routes’ command.

Later on, we may need to remove routes
which we will not use, or which we should
not allow users to access.	

app/controllers/causes_controller.rb	

After recording the votes;	

To maintain the ‘causes_id’ and/or
‘solutions_id’ of ‘votes’ table, we need the
description of relations.

One Vote belongs to a Cause.
A Cause has many Votes.
So the relationship between Vote-Cause is

one to many.

 	

models/cause.rb, models/cause_vote.rb,
and models/users.rb..	

Actually, we should install ‘guest’ to control
the votes, but I had used ‘user’ instead,
because of the time limitations…

You can see my program as a sample of
‘bad manner.’	

When we first call index method of the
causes controller, we fetch all the voting
records from cause_votes table.	

Look up @votes hash array, and if we find a
vote record for the current user to the
selected ‘cause,’ then we show the voting
history, in index.html.erb.

If there is a voting record, then, we should
update the record after his ‘re-vote,’ else,
we should create the vote record.	

 vote_param = {
 :cause_id => @cause.id,
 :guest_id => current_user, # it should be guest_id actually
 :vote => (@vote=='Pro'?1:0)
 }
if it is a new vote then
 @cause_vote = CauseVote.new(vote_param)
 @cause_vote.save
else
 @cause_vote.update_attributes(vote_param)
end
	

I wanted to add ‘voting history’ on the
screen… but once again, time up….

I have added ‘user name’ on the screen

instead…

Today’s lecture was the demonstration to
advertise wine and sell vinegar.
I will complete the system within a month year.	

The lecture plan for the next week is ‘Upload
and download images.’

I myself would try to show my own program
source code by next week of the
personalization result, but I cannot say I
would surely do. So please you yourself
try to install the design plan which I have
shown to you.

Syllabus? I will check it by next week.
Once again, sorry for my negligence.

