
Day 11: 28/June/2012

Upload and Download Images

p  Upload images as evidences of facts, or
the explanation materials of solutions,
and such.

p  Arrange one to many relations from
causes table to images table.

Name of the class: CaseAttachment
 table name: cause_attachments

One ‘cause_attachments’ record belongs to one

cause.
But one cause may have many images, so, relation

is ‘one-to-many.’

When we use
UML(Unified Modeling
Language,)
relationship is
described as shown in
the right.	

Behavior of Attachment class instances should be
defined in only one place, but relations are linked
to different tables. In order to let it be the ‘DRY’
design, we let each ‘attachments’ table inherit
one Attachment class. (Initial design…)	

	

Because of coding problems… I gave up
designing the inheritance from Attachment
class.

Structure is not DRY yet, but we use
CauseAttachment directly. Because of this
design problem, if we need to attach
images to a Solution table, we may repeat
the same kind of coding to
SolutionAttachment table. 	

CauseAttachment Class should have
 cause_id, integer (relation index to Cause)
 name, string, (filename, size 255)
 size, integer (image file size in bytes)
 type, string (MIME type name, size 32)
 content, blob (content of image file)

BLOB: Binary Large OBject. Field for image,

sound and such ‘raw’ binary data.

What is MIME?
 Multipurpose Internet Mail Extension

Such as:
 text/css
 image/jpeg
 image/png
 application/x-internet-signup

(and more than 571 types are used..)

http://www.geocities.co.jp/Hollywood/9752/mime.html	

Type	
 Contents	

NULL	
 Null Value	

INTEGER	
 Signed Integer Value in 1, 2, 3, 4, 6, or 8 bytes	

REAL	
 Floating point numerical value, in 8 bytes	

TEXT	
 Text string in UTF-8, UTF-16BE, or UTF-16-LE	

BLOB	
 Raw image of binary large object	

Such data type as ‘String’ is finally mapped
to Text type of Sqlite3, but for
convenience and/or the compatibility,
Sqlite 3 accepts other type descriptions
like ‘String’ and such.	

Type the following command (in one line):
 rails generate model CauseAttachment cause_id:integer
name:string size:integer content_type:string
content:binary

And then type:
 rake db:migrate

First I had put the column name ‘type’
instead of ‘content_type,’ because the
name is shorter. It had caused the
following error.

Just for your information.	

Set
 belongs_to :cause

in the cause_attachment.rb file, and set
 has_many :cause_attachments

in the cause.rb file.	

Now we add the uploading area to ‘Cause’
data create screen, in _form.html.erb.

Because the image file is too big, we can not
send the contents all together in only one
transmission. So, we allow HTML to send
in multi packets transmission.

<% form_for @cause, :html => {:multipart => true} do |f| %>

	

To upload the file, add the following in
_form.html.erb file.

 <div class="field">
 <%= f.label :attachment_file %>

 <%= file_field :file, :upload %>
 </div>

	

We add the following lines to cause_controller.rb in create
method;

 if params[:file]
 @file = params[:file][:upload]
 if @file && @file.respond_to?(:original_filename)
 stat = @file.tempfile.stat
 @cause.cause_attachments.create :cause_id => @cause.id,
 :name => @file.original_filename,
 :size => stat.size,
 :content_type => @file.content_type,
 :content => @file.read
 end
 end	

This is only performed
only when It responds to

original_filename property.	

 # POST /causes
 # POST /causes.json
 def create
 @cause = Cause.new(params[:cause])
 @cause.pros = 0
 @cause.cons = 0
 @problem = Problem.find(params[:cause][:problem_id])
 @cause.problem_id = @problem.id
	

 respond_to do |format|
 if @cause.save
 if params[:file]
 @file = params[:file][:upload]
 if @file && @file.respond_to?(:original_filename)
 stat = @file.tempfile.stat
 @cause.cause_attachments.create :cause_id => @cause.id,
 :name => @file.original_filename,
 :size => stat.size,
 :content_type => @file.content_type,
 :content => @file.read
 end
 end
 format.html { redirect_to @cause, :notice => 'Cause was successfully created.' }
 format.json { render :json => @cause, :status => :created, :location => @cause }
 else
 format.html { render :action => "new" }
 format.json { render :json => @cause.errors, :status => :unprocessable_entity }
 end
 end
 end	

	

‘?’ is a part of method name ‘respond_to?’
There are also the method names which

have ‘!’ in the name.
Most methods with ‘?’ at the end of the

name, respond boolean value; true or
false, such as ‘exist?’, and ‘matched?’

Most methods with ‘!’ implies the meaning
that they performs even if there are slight
problems in the executing environment. 	

When we click ‘back’ at the following
screen…	

At the ‘back’ link	

Causes all belong to one problem, so, all the
view screen requires the problem_id to
show (select) the related problem. (Thus
we had modified.)

But in some screen, we have not
programmed to hand ‘problem_id’ yet, so
this error message appears.

By assigning @problem in every method,
this error should dispear…	

The same reason causes another error.	

I forgot to put these two lines at the point of
creation, place

 @problem = Problem.find(params[:cause][:problem_id])
 @cause.problem_id = @problem.id

It might be defiant to say, though

Well, the ‘perfect material’ will easily lead you to
the result fruits, but rob you of the chance to
learn how to trouble-shoot!

So, I will give you chances to trouble-shoot!
 At the initialization, assign the parameter.
 At the reference, read and hand the parameter.	

Please modify like this:
<%= link_to ('Back', { :controller=>"causes", :action=>"index",

 :problem_id => @cause.problem.id}) %>

	

This week again, time is almost up again.
The following slides are not completed yet,

by running on Rails 3.2 environment, and
for this semesters’ topics; Problem Solving
Engine.
 Some slides are untouched from the
program for the environment of last year,
Rails 2.

I think you may need to rewrite/ reform the
codes.

	

Add the following lines to
cause_controller.rb as file method.

 def file
 attachment = CauseAttachment.find params[:id]
 filename = (params[:fileext]) ? "#{params[:filename]}.#{params[:fileext]}" :
 params[:filename]
 if filename != attachment.name
 render :file => File.join(RAILS_ROOT, 'public', '404.html'),
 :status => 404, :layout => true
 else
 send_data attachment.content,
 :filename => attachment.name, :type=>attachment.content_type
 end
 end

 	

File action is used
when images are

downloaded

module CausesHelper
 def format_column_value(ar, colname)
 if Cause === ar
 format_cause_column_value ar, colname
 elsif CauseAttachment === ar
 format_attachment_column_value ar, colname
 end
 end
	

 def format_cause_column_value(cause, colname)
 if colname == 'created_at'
 cause.created_at.strftime '%Y-%m-%d %H:%M' if cause.created_at
 else
 colname
 end
 end
	

 def format_attachment_column_value(atch, colname)
 if colname == 'content'
# 以下の２行は、showの画面では画像は表示せず、ダウンロードする形式	

link_to atch.name, {:action => 'file', :id => atch.id,
:filename => atch.name }
# 以下の１行は、showの画面で画像を表示する形式	

 image_tag atch.content, atch.size, atch.name
 else
 atch.send(colname)
 end
 end
end

<p id="notice"><%= notice %></p>
	

<h3>As a Cause of the problem: <%= @cause.problem.title %>
	

<p>
 Fact:
 <%= @cause.fact %>
</p>
	

<p>
 Pros:
 <%= @cause.pros %>
 Cons:
 <%= @cause.cons %>
</p>
	

<p>
 <% if @cause.cause_attachments.length>0 %>
 Attachments
 <table border="1">
 <tr>
 <% for column in @cause.cause_attachments.content_columns %>
 <th><%= column.human_name %></th>
 <% end %>
 </tr>
 <% for attachment in @cause.cause_attachments %>
 <tr>
 <% for column in @cause.cause_attachments.content_columns %>
 <% if column.name == 'content' &&
 attachment.content_type =~ /^image¥/.*?(png|jpeg|gif)$/ %>
 <td><%= image_tag url_for({:action => 'file', :id=> attachment.id,
 :filename => attachment.name}), :alt => attachment.name %></td>
 <% else %>
 <td><%= format_column_value attachment, column.name %></td>
 <% end %>
 <% end %>
 </tr>
 <% end %>
 </table>
 <% end %>
</p>
	

<%= link_to 'Edit', edit_cause_path(@cause) %> |
<%= link_to ('Back', { :controller=>"causes", :action=>"index",

 :problem_id => @cause.problem.id}) %>

l  According to the column (attribute) type, switch
the display format in ‘show’ causes view.

l  Unusual (in other languages) operator ===
returns true, when Cause === ar, and “object ar
is an instance of Cause class.”

l  There are two sample codes displayed in the
previous slide, to show images in the view or to
show only links to image display.
l  Commented out with # letter.

Now we have reached to show the
attachment contents from the causes link.	

l  The screen shots below is the previous
year result with Rails 2.x.

l  But we failed with Rails 3.x environment.
l  Why?

Asset directory is the default directory
where images are stored.

It seems rails try to find the image file with
‘img_tag’ description.	

p  Modify config\routes.rb

p  The following the indication for Rails 2.x.
p  We have not checked yet, but apparently, we

face with the routing problem.

We have almost reached to today’s planed
goal, but we failed at the very few steps
before the goal.

Please go forward for the last step by
yourself.

I am not sure if it were a proper word, but, “Good Luck!”	

Yukihiro Matsumoto says that ‘multiple-inheritance’ is not
always bad. In the following Japanese article.

http://itpro.nikkeibp.co.jp/article/COLUMN/20070828/280575/

You can write today’s report either in Japanese or in English,

paying respect to the Ruby Language Inventor.

Please discuss the design I have shown today to install

Attachments Class for three classes, Causes, Solutions, and
Problems.

Please discuss the ‘should-be’ design regarding the inheritance
on the practical standpoint.	

If we use ‘inheritance’ in a ‘good manner,’ it will absolutely
reduce codes(, and our labor) dramatically.

But if once we miss design the characteristics of the language,
and the installation environment, ‘Inheritance’ may be the
cause of complexity, and increase our labor cost to
maintain the source program.

I was wondering if I should have used the Attachment table as
the parent of CauseAttachment, SolutionAttachment, and
such.

And once again, as the result of ‘time-out’ I decided to use
CauseAttachment class without inheriting Attachment
common class. But I was not certain that this was the best
answer of the installation. So, please you students
judge!	

The lecture plan for the next week is
Session Management.

