
Day 13: 11/July/2012

Message and Mail Delivery

We discuss the ‘extension’ of our project, “Problem
Solving Engine.”

If we allow the participants of the system to debate
on certain topics, what kind of design could be
possible?

If we allow the chairman of certain topics to control
the discussion, what kind of design and screen
could be possible?

Let us think about all of these WEB system design,
based on Object Oriented Characteristics.

We will install the mail transmission.
And then, think about the extension of the

Problem solving engine.

	

p  We can send mails to certain users.
p  Then finish the design of the system.

Use ActionMailer: Modify
 config/environments/development.rb
Replace false with true at line #17, then Add

ActionMailer settings;
Don't care if the mailer can't send
config.action_mailer.raise_delivery_errors = true

ActionMailer::Base.delivery_method = :smtp
ActionMailer::Base.smtp_settings = {

 :address => "mail.smtp.server",
 :port => 587,
 :authentication => :login,
 :user_name => "mailaddress@domain.jp",
 :password => "password",
 :domain => "domain.jp"

} 	

Some settings will be explained in the class
room.	

Let us use Msend class for mail
transmission. The method name should
be simple_send for this sample.

Type the following command;
rails generate mailer msend simple_send	

class Msend < ActionMailer::Base
 default :from => ”ikuo.kobayashi.XXXX@example.com",

 :return_path => “kobayashi@XXXXXX.co.jp”
	
 # Subject can be set in your I18n file at config/locales/en.yml
 # with the following lookup:
 #
 # en.msend.simple_send.subject
 #
 def simple_send(recipient)
 @greeting = "Hi”
	
 # mail(:to => recipient, :subject => “Hello Mailer”)
 mail(:to => recipient) do |format|

 format.text
 format.html

 end
 end
end

	

It is best to check it at api.rubyonrails.org.
If we want to explicitly render only certain

templates, pass a block:
mail(:to => user.email) do |format|

 format.text
 format.html

end

And now, simple_mail.text.erb　is
generated.

	

Msend#simple_send
	

<%= @greeting %>, find me in app/views/app/views/msend/
simple_send.text.erb

By arranging the content of this file, we can

generate the content of the mail, just like
in Web screen.

	

We have defined the simple_send method in
Msend Class, with a recipient as an
argument.

We can send mail in two ways,
 Msend.simple_send(“userAddr”).deliver

or
 mail = Msend.simple_send(“userAddr”)
 mail.deliver

That is what I have not designed yet.
Would you arrange the mail transmission

screen in this PSE sight?	

It all depends on the system design.
I think, (if it were my system,) I will let the

person who registered the problem should
be a chair person of the discussion, and
give the person to control the debate.

To keep the clarity of the system, I would
show the counter of the removal of
‘causes’ and ‘solutions’ by the chair
person.

All the visitors can see the counter.	

To realize the discussion above, we should
explicitly introduce the concept of ‘the
owner of the record.’

In OR mapping, a “record” in the database
is an instance in the object model. And
then, only the owner and the chair person
should be able to remove and modify the
record.
 Of course, this is one of the idea of the
system.	

The Final lecture. The plan is ‘the summary of the
semester.’

What I think now is to let all students think about

the ‘System Design’ keys of Object Oriented WEB
and DB system. In other words, what is(/are)
the best approach(es) to make the most of the
Object Oriented characteristics of the ruby
language environment.

Very vague? Exactly!

