
Day 14: 19/July/2012

Anti Virus Policy and
Object Oriented Web Application

The Final lecture. The plan is ‘the summary of the
semester.’

What I think now is to let all students think about

the ‘System Design’ keys of Object Oriented WEB
and DB system. In other words, what is(/are)
the best approach(es) to make the most of the
Object Oriented characteristics of the ruby
language environment.

Very vague? Exactly!

The other thing that the original lecture plan
included was the security issue.

One of the point which had been introduced from

version 2, was anti CSRF policy. Now our rails
version 3.2, we see the line below every time we
generate the project;

 <%= csrf_meta_tags %>
 in layouts/application.html.erb

Let us have a glance at CSRF now.	

Cross-site request forgery, also known as a
one-click attack or session riding and
abbreviated as CSRF (sometimes
pronounced sea-surf) or XSRF, is a type of
malicious exploit of a website whereby
unauthorized commands are transmitted
from a user that the website trusts.

Well, let’s see Wiki, and some other useful
pages.	

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://wiki.developerforce.com/page/Secure_Coding_Cross_Site_Request_Forgery
	

Ruby on Rails 2.0 provides a protect_from_forgery
feature. This implementation does not meet
salesforce.com's requirements for CSRF
protection if used with the :secret option because
the token value will be the same for all users.
See General Guidance, above, for anti-CSRF
token requirements. Use of the
protect_from_forgery feature without the :secret
option with Ruby on Rails 3.3 and above creates
a random token that meets Salesforce.com
security requirements. See the documentation for
ActionController::RequestForgeryProtection for
more information. 	

http://wiki.developerforce.com/page/Secure_Coding_Cross_Site_Request_Forgery
	

All requests that create, update or delete data or
have side-effects require protection against CSRF.

The most reliable method is to include an anti-CSRF

token as a hidden input with every application
action. This token should be included in all forms
built by the genuine application and validated to
be present and correct before form data is
accepted and acted upon.

http://wiki.developerforce.com/page/
Secure_Coding_Cross_Site_Request_Forgery#General_Guidance
	

Use the POST method for requests requiring
protection to avoid disclosing the token
value in Referer headers.

Token values must be unique per user

session and unpredictable. 	
	

http://wiki.developerforce.com/page/
Secure_Coding_Cross_Site_Request_Forgery#General_Guidance
	

We are now learning how to write WEB program.
And, the WEB pages we write are to be attached
from malicious pieces of codes, such as CSRF.

Also there will be a chance that new security threat
may appear, and it is clear that the WEB system
developer always have to handle those security
problems.

Rails had provided the anti-CSRF embedded
mechanism, but sometimes, we ourselves have to
write the code against such threats.

Oh! WASP? Probably not.
The Open Web Application Security Project.

We often have to write the defending

algorithms in the application we develop.
For those cases, we have to search for the
knowledge on characteristics of the threat,
and orthodox approaches against the
threat. For those cases, some of the WEB
sites are very useful.	

https://www.owasp.org/index.php/Category:OWASP_Project
	

Once again, the quite vague title is the LAST
report theme to you, students!

What does ‘Perfect Object Oriented

Installation’ mean?
What is the merit of that?

	

Rails environment allows us a rapid
development frameworks.

Also, we have built-in TDD (Test Driven
Development) framework in rails.

Test cases can be an instances of the Test
Class. Is there any merit that they are
installed (automatically generated) as
Class?

See the samples in the next page.

app/test/functional/causes_controller_test.rb	

Please report the merit and demerit of the
installation based on the Ruby on Rails,
which employs the Object Oriented
Technology, and the concepts.

300 to 1,000 words report is accepted.
	

