
Web System Development with 
Ruby on Rails 

Day 6(25/Oct/2011) 
Database Language: SQL 



Today's Theme 
Learn What is Database 
p  Learn database language: SQL 
 
p Add one table to the project 



Is this too easy, and boring?	

If you think that this lecture is so easy to 

understand that you guess what to do 
before the lecturer explains… 

Then, please kick off another WEB 
application project of your own design 
with your originality.  It may help you 
raise a new question, how to write 
program to realize certain design of your 
own.  (This will be added to your score.) 

Please do not waste your time, raise new 
questions and make the most of this class.	




What is database? 

� Collection of data composed specially for 
computer to read and write easily. 

 

� What is 'Data' 

l  Information managed by electronic and/or 
magnetic signals; Pictures, programs, music, and 
literatures are all data when they are transformed 
in the figure of electronically accessible form. 



Ain't “File” enough? 
p What is “File” 

n Collection of data on the computer, which 
is packed so that it could be accessed as 
one unit.  

 
p What differs between Database and File? 

n Name differs! Of course! Is that all? 
n When files gather,  they turn to become 

database? Is that so? 



Problems of using files 
p  If data is modified, all the associated files 

should be updated. 
n  Complex, if information is linked together. 
n  If some are left un-updated, contents would 

become different from file to file.  It will cause 
the lack of “integrity” 

p Waste of storage 
n  Independent files require independent 

management area. They should be packed. 



Solving Problems of separate files 
p Fundamental Solution 

n Sharing data, recorded in one place 
 
p Dogma: 

n One fact in one place. 
n One fact in Only one place. 

 



DBMS 
p DBMS stands for 

“Database 
Management 
System” 

p DBMS and DB are 
put together to 
make “Database 
System” Database 

DBMS 

Database 
System 

Application 
Program 



p SQL 
n  Structured Query Language 
n  SQL is used to access and manipulate database 

for other application programs and/or users. 
n  SQL is a kind of DML（Data Manipulation 

Language) 

p SQLite3 is one of installation of SQL 
n  Oracle, SQL Server, DB2 are famous 
n  PostgreSQL and MySQL are “freeware” 

SQL is a DB Manipulation Language 



Modeling Data 
p What does it mean “Data modeling?” 

n Describe data structure 
p Relations between properties 

n Describe Constraint for Conformance 
p Conformance – Having no contradiction 

between components 
n Describe how to manipulate data 

p Separate input fields and calculated fields 

p Define Schema by data modeling 



What is Schema 
p Schema 

n Data structure obtained by describing 
application data model 

n Relations between components of data 
 
p Three Layer Schema model: 

n External Schema, Conceptual Schema, and 
Internal Schema 



OR Mapping 
p  Object Relational Mapping 

n  In Object-Oriented Language, Class structure can be 
directly linked to database 

n  Available on the platform such as Rails 
n  But, sometimes, Database Structure does not match 

with object oriented Program’s Class. 

OR Mapping is to solve this problem. 
p  In “Ruby on Rails”, Model = Class 

n  Class – Grammar 
n  Model – Structure 

p Designing Schema has directly become Ruby Class. 
p Here we start with simple structure. 



DB and Tables 
p Information is stored in Tables 
p Tables are called as “Relations”, in RDB; 

Relational Database 
n Tables have Columns(Attributes) [vertical] 

n Records are stored in Tapples(lines) 
[horizontal] 
p Instances/ records 



Relation(Table) Structure 
p  There are Definitions in “Relational DB”, 

and popular names in SQL, enclosed with 
(). 



Primary Key 
p Simply think as ID (Identifier) 

n Such as “Membership Code”, “Student 
Number” 

 
p It should be UNIQUE 

n Unique – means “only one, and identical” 
n No other data has the same primary key value 
n No other student has the same “Student 

Number” with you! 



Start and Stop using MySQL 
p  Type the following command to run MySQL 

n  Mysql -u root 

p  -u option followed by user name 
p  When password is set for the user to use MySQL, 

-p option should be added 
n  Mysql -u root -p 
n  If you forget the password for “root”, it is just a tragedy! 

So we do not set password for the lecture environment, but for the 
real service environment, password should be set which you NEVER 
forget!	


p  When you stop using mysql, simply type “exit” on the mysql 
prompt;	


n  Mysql >> exit	
 We do not use MySQL this year.	




Three Project Sub-versions in sqlite3	


There are three project sub-versions. 
 Development  --- Logic Development 
 Test      --- Test Run 
 Product    --- Commercial Version 

 
There are three different database files. 
 development.sqlite3 
 test.sqlite3 
 product.sqlite3 



Starting and Stop using sqlite3	

Move to (Project root)/db, i.e. memopad/db 

directory, then type  
 sqlite3 development.sqlite3 

To see the command list of sqlite3, type 
 .help 

To exit from sqlite3, type 
 .exit 

 
	




Sqlite3 Command (1/2)	

SQLite version 3.7.11 2012-03-20 11:35:50 
Enter ".help" for instructions 
Enter SQL statements terminated with a ";" 
sqlite> .help 
.backup ?DB? FILE      Backup DB (default "main") to FILE 
.bail ON|OFF           Stop after hitting an error.  Default OFF 
.databases             List names and files of attached databases 
.dump ?TABLE? ...      Dump the database in an SQL text format 
                         If TABLE specified, only dump tables matching 
                         LIKE pattern TABLE. 
.echo ON|OFF           Turn command echo on or off 
.exit                  Exit this program 
.explain ?ON|OFF?      Turn output mode suitable for EXPLAIN on or off. 
                         With no args, it turns EXPLAIN on. 
.header(s) ON|OFF      Turn display of headers on or off 
.help                  Show this message 
.import FILE TABLE     Import data from FILE into TABLE 
.indices ?TABLE?       Show names of all indices 
                         If TABLE specified, only show indices for tables 
                         matching LIKE pattern TABLE. 
.load FILE ?ENTRY?     Load an extension library 
.log FILE|off          Turn logging on or off.  FILE can be stderr/stdout 
.mode MODE ?TABLE?     Set output mode where MODE is one of: 
                         csv      Comma-separated values 
                         column   Left-aligned columns.  (See .width) 
                         html     HTML <table> code	




Sqlite3 Command (2/2)	

     insert   SQL insert statements for TABLE 
                         line     One value per line 
                         list     Values delimited by .separator string 
                         tabs     Tab-separated values 
                         tcl      TCL list elements 
.nullvalue STRING      Print STRING in place of NULL values 
.output FILENAME       Send output to FILENAME 
.output stdout         Send output to the screen 
.prompt MAIN CONTINUE  Replace the standard prompts 
.quit                  Exit this program 
.read FILENAME         Execute SQL in FILENAME 
.restore ?DB? FILE     Restore content of DB (default "main") from FILE 
.schema ?TABLE?        Show the CREATE statements 
                         If TABLE specified, only show tables matching 
                         LIKE pattern TABLE. 
.separator STRING      Change separator used by output mode and .import 
.show                  Show the current values for various settings 
.stats ON|OFF          Turn stats on or off 
.tables ?TABLE?        List names of tables 
                         If TABLE specified, only list tables matching 
                         LIKE pattern TABLE. 
.timeout MS            Try opening locked tables for MS milliseconds 
.vfsname ?AUX?         Print the name of the VFS stack 
.width NUM1 NUM2 ...   Set column widths for "column" mode 
.timer ON|OFF          Turn the CPU timer measurement on or off 
sqlite> 	




“Database” in MySQL	


When we use MySQL, once we login to 
mysql as root user, we can access to all 
‘Databases’ on that computer.  On the 
other hand, when we use SQLite3, we 
start using sqlite3 by opening one 
database file. 

So, in using MySQL, we create/remove 
database in MySQL data storage, and we 
connect or use database. 

In SQLite3, we had already chosen one 
database when we open one sqlite3 file.	




Create and Remove Database in MySQL 
p  Creating Database 

n  Mysql >> create database [DB_name]; 
n  ex： create database friendDB; 

p  Here, the database “friendDB” is a large container for all 
“fiends'” tables. 

p  Remove Database 
p  MySQL >> drop database [DB_name]; 
n  ex： drop database friendDB; 
n  Ultimately, be careful, this command simply erase 

everything! 

p  Show the list of databases 
n  mysql  >> show databases; 



Declare using database in MySQL 
n  mysql >> use [DB_name]; 
n  ex：　use friendDB; 

 
p  The Command, “connect [DB_name]” too 

has the same result. 



Another way to use SQLite easily	

Use SQLite Database Browser. 
Go to  
http://sqlitebrowser.sourceforge.net/index.html 
for more information. 
 
But, for the learning purpose, we dare learn 

typing SQL commands. 



Create Table (1/2) 
p  sql  >> create table TableName( 

　　　ColName  [Data Type]　[Attributes], 
); 
Repeat  

p  ColumnName [Data Type] [Attribute] 

the times of number of columns 

p  Data Type：int, decimal, text, varchar, datetime,  
  timestamp, blob  

p  Column Attributes：	


primary key, not null 



Creating Table(2/2) 
Design a table which contains only member ID and member name.	


create table MemberT( 
MemberID  char(6) primary key,  
MemberName  char(16) not null ); 
	


Check the result of above command for MySQL.	


show columns from MemberT;  (on mySQL) 

.schema MemberT   (on SQLite3) 
+------------+----------+------+-----+---------+-------+	
 
|	
 Field	
 	
 	
 	
 	
 	
 |	
 Type	
 	
 	
 	
 	
 |	
 Null	
 |	
 Key	
 |	
 Default	
 |	
 Extra	
 |	
 
+------------+----------+------+-----+---------+-------+	
 
|	
 MemberID	
 	
 	
 |	
 char(6)	
 	
 |	
 NO	
 	
 	
 |	
 PRI	
 |	
 NULL	
 	
 	
 	
 |	
 	
 	
 	
 	
 	
 	
 |	
 
|	
 MemberName	
 |	
 char(16)	
 |	
 NO	
 	
 	
 |	
 	
 	
 	
 	
 |	
 NULL	
 	
 	
 	
 |	
 	
 	
 	
 	
 	
 	
 |	
 
+------------+----------+------+-----+---------+-------+	
 



See if tables exist 
p See the list of the table (in the selected  

database) 
n  sqlite >> .tables 
n  Mysql >> show tables; 

p  If you find the table already exists, then 
you may need to check the columns of the 
table. 
n  mysql >> show columns from TableName; 



Storage Classes and Datatypes	

Each value stored in an SQLite database (or manipulated by 

the database engine) has one of the following storage 
classes: 

NULL. The value is a NULL value. 
INTEGER. The value is a signed integer, stored in 1, 2, 3, 4, 

6, or 8 bytes depending on the magnitude of the value. 
REAL. The value is a floating point value, stored as an 8-byte 

IEEE floating point number. 
TEXT. The value is a text string, stored using the database 

encoding (UTF-8, UTF-16BE or UTF-16LE). 
BLOB. The value is a blob of data, stored exactly as it was 

input. 

	

http://www.sqlite.org/datatype3.html	




rails/ mysql / ruby 
p  In ruby on rails, SQL types for the 

migration, and the ruby Class ( types ) are 
listed in the next page.  

p MySQL may need the maximal digits for 
such types as int and varchar. 
p  In ruby language, Class Description start with 

Capital charcters. (same with Java) 



Supported Datatypes	

:binary 
:boolean 
:date 
:datetime 
:decimal 
:float 
:integer 
:primary_key 
:string 
:text 
:time 
:timestamp 
These will be mapped onto an appropriate underlying database type.  

	




See the table contents	

p  Use Select Statement 

n  If you can write SQL “select” statements to obtain data 
with complex conditions, it means that you have 
intermediate skill of database. 

p  If we only want to show all fields from all records 
of a table, then type;  
n  sql >> select * from (TableName); 
n  ex.：　select * from  friends; 

p  *(asterisk) is a wild card to see all columns. We 
usually list the column names we want to see.	


Why not trying the following site? 
http://www.1keydata.com/sql/sql.html	




Write data into table (1/2)	

•  sql  >> insert into tableName	


    values ( column1Value, column2Value　・・・ ); 
We list the column values in the order we first created 

the table, up to the number of columns we described in 
the table declaration.   

n We can also write insert statement as the 
following sample. In first (), column names are 
listed. 

n  INSERT INTO Apparel_Store (name, phone) VALUES  
 (’Shimamura', ’+81-493-72-XXXX'); 

 



Write data into table (2/2)	

To insert the member data into the member table, created in 

the saveral pages before;	


insert into MemberT values ( 

　　　　　‘A001’, ‘Aoyama’ ); 

insert into MemberT values ( 

　　　　　‘B002’, ‘Konaka’ ); 

To see the insersion result, type;	

select * from MemberT; 

+------------+-------------+	
 
|	
 MemberID	
 	
 	
 |	
 MemberName	
 	
 |	
 
+------------+-------------+	
 
|	
 A001	
 	
 	
 	
 	
 	
 	
 |	
 Aoyama	
 	
 	
 	
 	
 	
 |	
 	
 
|	
 B002	
 	
 	
 	
 	
 	
 	
 |	
 Konaka	
 	
 	
 	
 	
 	
 |	
 
+------------+-------------+	
 

+------------+----------+------+-----+---------+-------+	
 
|	
 Field	
 	
 	
 	
 	
 	
 |	
 Type	
 	
 	
 	
 	
 |	
 Null	
 |	
 Key	
 |	
 Default	
 |	
 Extra	
 |	
 
+------------+----------+------+-----+---------+-------+	
 
|	
 MemberID	
 	
 	
 |	
 char(6)	
 	
 |	
 NO	
 	
 	
 |	
 PRI	
 |	
 NULL	
 	
 	
 	
 |	
 	
 	
 	
 	
 	
 	
 |	
 
|	
 MemberName	
 |	
 char(16)	
 |	
 NO	
 	
 	
 |	
 	
 	
 	
 	
 |	
 NULL	
 	
 	
 	
 |	
 	
 	
 	
 	
 	
 	
 |	
 
+------------+----------+------+-----+---------+-------+	
 



Update Data	

p Sql >> update "table_name”  

set ”column1" = [value1], “column2” = [value2].. 
where {condition} ; 

p Modify the rows that satisfy the 
{condition} clause so that the field 
columns in the set clause to have the 
values.  

p  Important Notice: If you forget writing 
where clause, update command replaces 
the column value of all records in the 
table. (And we cannot restore!)	




Before Object Oriented Database	

We embedded the scripts to control the 

database in SQL in the WEB programs. 
There were no automated process to access 

database, and we had to write SQL 
statements for every steps that we access 
the database to  store, fetch, search, and 
delete information.   

In ruby too, the database access phases are 
almost the same, but we do not have to 
write SQL at all. (I want you to read SQL.)	




Today’s Theme	

p Add one table: Category	


n  Memo has their contents in memos table. 
n  Category of memos are stored in categories. 

p We give One to Many relationship from 
categories to memos next week. 



Register Categories	

p  Think the categories of your memos. 

p  Internationalize (Localize?) the WEB page labels and 
link names, into your mother tongue.  

p  Those ‘improvements’ of your WEB application may 
be considered as the points to be added to your 
score. 

p Memos have categories; ‘Idea’, ‘To Do’, 
‘Phone’, ‘Dinner’, ‘Party’, and such. 



Generate Category table	

Type the following command; 
 rails g scaffold category name:string 

 
Then, we create the database 
 rake db:migrate 

 
Please refer to the page 23 & 24, in the 

slides of Day 2.	




No replacing scaffolds.css.scss	




Test run and register data	

Complete the migration, then next, run the 

server 
 rails s 

And add some data into categories 
 



Categories program screen	


Like memos listing screen, we have whole 
set of screens to add, edit, show and 
remove the categories.	




Check where database is created.	

p  In the sqlite3 database, the database 

categories should be generated. 
p  Move to memopad/db, and find 

development.sqlite3 file.   
p  This is the database file for memopad project. 

p  In the GNOME terminal, type 
 sqlite3 development.sqlite3 

 



Type SQL command in sqlite3	

p  When you typed SQL command, do not forget to 

add ;(semicolon) at the last of the sentence. 
p  Type 

 .tables 
to see memos and categories tables there. Type 

 select * from categories; 
To see the contents of categories; 

Screen shots の 
更新	




Check the schema of categories	

p  Type 

.schema categories 
to see the schema of categories.	

p When we generated the table, we did not 

specified the field ID, but it is generated. 
p  It is important to set relationship.	


n  Now, if we add the field ‘category_id in the 
other table, it will become the relation to the 
table ‘categories.’ (singular_id) 



Sqlite3 commands	




Singular form and Plural form	


When we typed table generation command, 
we specified memo in singular form.  

The generated table’s name was plural form, 
memos. 

 
In ruby on rails environment, plural forms 

have significant grammatical meaning, so 
please be careful if the word is in singular 
form or plural form. 	




Irb (interactive ruby) 	

Run irb, and then type the following 

commands. 
We can convert the form of nouns.  
1: require “rubygems” 
2: require “active_support/inflector” 
3: puts “ox”.pluralize 
4: puts “data”.singularize	




Continued to the next week…	


We have generated a new table, 
‘categories.’ 

We give relationship to memos and 
categories next week.  

And our original plan to ask report 
submission this week is postponed to the 
next week.  So, no report theme today.  

In the report of next week, I ask you the 
screenshots of your project.  If you 
generate your ORIGINAL project, you are 
most welcome to do so. 	




If you were absent for the day…	


p Generate categories table, and add some 
data.   

p Report the screenshots of categories 
listing screen, and the screenshots of 
sqlite3 commands and responses in the 
terminal. 

 


