
Web System Development
with Ruby on Rails

Day 7(8/Nov/2012)

Relational Database

Today's Theme
p  Learn Relation Structure in Relational

Database
p  Understand how to describe the

relational structure

p  Add new Code Table to the relational
database

Modeling Data	

p  What does Data modeling mean?

p  Describe data structure
p  Relations between properties

p  Describe Constraint for Conformance
p  Conformance – Having no contradiction between

components

p  Describe how to manipulate data
p  Separate input fields and calculated fields

p  Define Schema by data modeling
	

Relation Type and Entity Type	

p  Relation : is a relation and/or a Table

p  There are two types of relations, both called
“Relation” which means;
p  Entity, or
p  Relation

p  Entity
p  Real world object (not physical sometimes)

p  Relation
p  Relation between two entities

What is Entity

l  Entity Type:
l  physically exists in the real world;

-  students, teachers, lecture rooms, pizza(menu)

l  is identical in the real world;
-  University, subjects, flights, club teams
-  They cannot be seen or even touched.

l  Identical Entity
l  University Buildings physically exists, but the

organization “university” does not necessarily
require the buildings.

What is relation type

l  Relation Type
l  Represents the relation between two entities

-  Enrollment: Students “Enroll” in subjects
-  Order: Customers “Order” pizza
-  Reservation: Customers “reserve” flights
-  Rental: Customers “rent” DVD

l  One customer can rent many DVDs
l  One customer can order many pizza
l  One student can enroll in many subjects

Example: “Club Activity”

Original Figure: Haruo Hayami, Practicing Base of Relational Database, 2008,
Corona Publishing, in Japanese	

ER figures of “Club Activities”	

Original Figure: Haruo Hayami, Practicing Base of Relational Database, 2008,
Corona Publishing, in Japanese	

What is Schema	

p  Schema

p  Data structure obtained by describing
application data model

p  Relations between components of data

p  Three Layer Schema model:
p  External Schema, Conceptual Schema, and

Internal Schema
	

ANSI/X3/SPARC
3 Layer Schema Architecture	

First Normal Form(1NF)	

Relations contain only “atomic” values
Only when all attributes in the relation are “atomic

values,” the relation is First Normal Form.
	

Original Figure: Wikipedia	

Normalization	

p  First Normal Form (1NF)

p  Consist of only “atomic” values
p  Second Normal Form (2NF)

p  Specifically: a table is in 2NF if and only if it is
in 1NF and no non prime attribute is
dependent on any proper subset of any
candidate key of the table.

p  Third Normal Form (3NF)
p  It is in 2NF and every non-prime attribute of R

is non-transitively dependent (i.e. directly
dependent) on every superkey of R.

	

Intuitive Guide for Normalization
p  Mathematically difficult, but on intuition...

p  Student A moved his apartment house;

p  He submitted the “notice of address
movement,” only one business section, but
all the other business section has come to
know his “address movement.”

p  In the normalized form, necessary change of
information are transferred to all the necessary
sections.

The principle of Normalization	

p  Means to maintain the data integrity

p  Data should be shared and stored only in one place.
p  Normalization is one of the mean to maintain the

integrity.

p  One fact in one place.
p  One fact in Only one place.

p  This is the design principal of database.

Today's practice theme
p  Make one table of category, then

add relations from memos to categories.
p  Step 1: add one field into memos

p  Add one migration file (to add and/or
remove up relation field,) by generating
migration file.

p  Step 2: execute migration
p  Step 3: add drop down list of categories

in the memos table.

Scaffolding of Category
Prepare scaffolding and migration file to

create categories table
 (We have done this the last day.)
 (See Page 38 of Day 6 Slides)

rails generate scaffold categories name:string
-  Data input views, model, and controller

are generated.
-  Migration file of category is generated.

When completed then run
rake db:migrate

Migration to Add Column 	

We generate migration file of adding Column

to Memos table by typing the following
command;
 rails generate migration AddCategoryIdToMemos

Note that the generated Migration file needs

to be modified.	

Migration File	

Add the following two lines in the

2012mmddhhMMss_add_category_id_to_memos.rb file;
 add_column :memos, :category_id, :integer
 Memo.reset_column_information

In ActiveRecord::Migration, there are
‘add_column’ and some other methods to
change schema available.	

Migration other than create/drop
p  Migration allow us not only create/drop tables, but

also add, rename, and change columns

See http://guides.rubyonrails.org/migrations.html

p  Add column

p  add_columm :table, :column, :type, :options

p  Rename column
p  rename_column :table, :column, :newColname

p  Change column type
p  change_columm :table, :column, :type, :options

p  Remove_column
p  remove_column :table, :column

Migration and the name
p  Insert link_id to categories in Memos table;

p  category_id can be used as a link.

p  There is a rule in Ruby

Convention over Configuration

p  The name of Relation field is “name_id”
where the name should be singular form.

p  It will be category_id in this case.

Migration of Adding Column	

When you finished updating the migration

file to add columns, then do the migration.
Type:
 rake db:migrate

Confirm the result of migration	

After you have migrated the Column Adding

change, confirm the result by typing
sqlite3 command.	

Set category_id accessible	

p  In memopad/app/models/memo.rb
class Memo < ActiveRecord::Base

 attr_accessible :content, :category_id
end

p  Add :category_id to the list of accessible

attributes.
	

One to Many Relationship	

l  From memos to categories, choose one.
l  From categories, there are many memos

in one category.

In memo model (app/models/memo.rb)

belongs_to :category
In category model (app/models/category.rb)

has_many :memos
Be careful of singular/plural form.

Setting up relationship	

p memopad/app/models/categories.rb
class Category < ActiveRecord::Base
 has_many :memos
end

p memopad/app/models/memo.rb
class Memo < ActiveRecord::Base
 belongs_to :category
end

When you mistyped	

p  When you mistyped in scaffolding, then type

rails destroy (something you have specified.)
 ex. rails destroy scaffold Category
 rails destroy migration AddCategoryIdToMemos

p  If you successfully generated scaffold, and run
the following already;
 rake db:migrate

p  If you noticed your mistakes after the migration,
type rollback after the successful migration.
rake db:rollback

One to One, Many to Many cases	

p  In case of One to One, either one should

become main.
p  Main model has_one
p  Sub model belongs_to

p  In case of Many to Many relationship,

p  both has_and_belongs_to_many

Singular form or plural form?	

l  belongs_to, has_one(space):(singular)	

l  has_many, has_and_belongs_to_many

cases, (space):(colon)(plural form)	

l  Ruby has method to convert singular form

into plural form, and plural form into
singular form.

l  Please see Page 47 of day 6 slides.

	

Type of relations between tables
n  One to one

n  Student number <==> Student Name
n  One to many

n  Name in address book <==> Phone numbers
n  Many to many

n  Guest in restaurant <==> ordered dishes

Today’s goal	

We are going to get the following screen;
Here we have a drop down list of categories

in the memo’s input screen.	

Preparation for the last modification	

When we miss the link, it will cause an error

in tracing the link from memos to
categories.

So, make sure that we have ‘category_id’
field values in all memos.
	

Make sure we have categories list	

Like memos listing screen, we have whole

set of screens to add, edit, show and
remove the categories.	

Page 41 of Day 6 slides	

Add Category_id input in _form	

Edit app/views/memos/_form.html.erb
Add the following four lines;
 <div class="field">
 <%= f.label :category_id %>

 <%= f.text_field :category_id %>
 </div>

	

Add category_id in index.html.erb	

Below the t :content line, add Category_id heading.
<tr>
 <th><%= t :content %></th>
 <th>Category_id</th>
 <th></th>
 <th></th>

 Then, add <%= memo.category_id %> below content.
 <td><%= memo.content %></td>
 <td><%= memo.category_id %></td>
 <td><%= link_to (t 'show'), memo %></td>	

Make sure all memos have category_id	

In order to avoid link error, just make sure

that all memos have category_id listed on
the screen.
	

Drop Down list	

Modify app/views/memos/_form.html.erb
Now coment out f.text_field :category_id,

and then add the following line.
 <%= f.select :category_id, Category.all

 .collect{|c|[c.name,c.id]} %>

Modify List from ID to Link	

Modify app/views/memos/index.html.erb
Replace
 <th>Category_id</th>
 <td><%= memo.category_id %></td>

To
 <th>Category</th>
 <td><%= memo.category.name %></td>

	

Listing Memos Screen	

Now the screen should be like this;
	

Link of Relation	

Once we embed the link by writing

relation_id in the field list, e.g.
category_id, then, we can access to the
any linked field by writing
relation.field_name, e.g. category.name.

	

See Console Screen	

We can check the Database Access, by

reading SQL display in the console.
	

Report Theme
p  No report is required, for today.

Absence Report	

List up all the changes you have done to let

memos have the link to categories table.
Then, add the ‘Listing Memos’ Screen you

have updated so that category of each
memo shows the category name.
	

