
Web System Development with
Ruby on Rails

Day 9(22/Nov/2011)
Grammar of Ruby Language

Today's Theme
p  Learn Grammatical Strucure of Ruby

Language

p  Class Definition, Method Definition
p  Describing Array and Hash Array
p  Symbol Description
p  Usage of Iterators
p  Regular Expression
p  Rails API

Class Definition
l  Under Rails Environment,

l  In the “models” folder, there is memo.rb
l  In the file, Relation is described
l  Inherit the Super Class: “ActiveRecord”

-  Major important Functions are defined in Super
Class.

-  In Rails Environment, Super Classes are predefined.
class Question < ActiveRecord::Base
 belongs_to :quizset
 belongs_to :category
 validates_presence_of :code,:sentence,
 :answer, :choice1, :choice2,
 :choice3, :choice4
end

Super Classes in Object Oriented
Environment
l  “Basic Tools(Basic functions)” are defined

in “super class Environment” those of
which users often uses.

By inheriting those super class,
descendants can use those functions.
l  Ex, UIWindow Class in iOS Application

-  provides “Screen Function” in iPhone and iPad
l  Ex, ActiveRecord in ruby

-  provides major functions for Database Access
l  Ex, Application Controller in ruby

-  Defines methods to connect models and
database

Definition of Method
def name(args)
end
l  If no arguments

are given, only the
method name
appears

l  Examples in the
right, defines two
methods

String literals
l  Both Double quotation” and 'single

quotation’ work.
l  Both quotations can contain the other

type quotation among them, so they are
used to contain the other quotation.

l  Double Quotation can be used to realize
the following function
l  Embed and show variables' value
l  Use the control characters

Embed variable reference in String
l  Invoke irb on GNOME shell,
l  Assign string literal to a variable,
l  In another string enclosed by double

quotations, #{name} will be developed to
show the value of the variable by its
'name.'

Specify filename to run ruby
l  If a program has

become too long to
run in a command
line, write the whole
program into a file to
run it.

l  We often write a
shebang, and
encoding specification
at the top lines.

l  Type
ruby FileName

l  In the command prompt

l  At the top two line, write

#!/usr/local/bin/ruby
-*- coding: utf-8 -*-

so that UTF-8 characters are

shown in the readable
appearances.

Formatted String printouts
l  The same with C

language, printf
can be used.

#! ruby -Ks
-*- coding: Windows-31J -*-
e = 2.7182818284
f = 123456789.12
print "e= #{ e }\n"
print “2 by e makes #{ 2 * e }.\n"
prime100 = 541
print “100th prime number is #{prime100}.\n"

printf("e = %5.3f\n", e)
printf("f = %4.3f\n", f)

Elements of Array
l  Array elements (objects) may belong to

different Classes each other.
l  Array Class can contain different Class instances,

such as Integer, String, Array, and such. They
are different but all belongs to the same Class,
‘Object’ at last.

Sample of Array (1)	

Hash (Association Array)
l  When we define Hash, “{ }” are used,

but for referencing, it can be used as the
same with ordinary array.

l  Strings can be used for index.
population = {
 'France' => 60424213,
 'Germany' => 82424609,
 'Italy' => 58057477
}
puts “Italy: #{population['Italy']}”
population['Japan'] = 127767944
puts “Japan: #{population['Japan']}”

Conditional Branch
if condition1 then	

programs when condition1 is satisfied	

elsif condition2 then	

programs when condition2 is satisfied	

else	

neither condition 1 or 2 is satisfied	

end	

	

l  “:” is used instead of “then”, when codes are
written in 1 line.	

Comparison and Logic operators
l  Comparison operators

used in a conditional
branch:	

==, ===, !=, >, >=, <, <=,
<=>, =~, !~　etc.	

l  left and right is not
symmetric in “===”
operator.	

l  =~ is for “regular
form”	

l  Logic operators used in
a conditional branch:	

&&, ||, !, and, or, not, etc.	

l  Comparing && and ||,  
“&&” has higher priority
while “and” and “or”
have the same priority.	

Example of regular form
greeting = ‘Good Morning.’
if /[Mm]orning/ =~ greeting then 	

 reply = ‘Good Morning.’	

else	

 reply=‘Good Day.'	

end
puts reply

l  Execute the above example
l  In the above example, it is judged if

“Morning” or “morning” is included in the
string.

Regular Expression Patterns	

Pattern	
 Description	

^	
 Matches beginning of line.	

$	
 Matches end of line.	

.(dot)	
 Matches any single character except newline.(Wildcard)
Using m option allows it to match newline as well.	

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

[…]	
 Matches any single character in brackets.	

[^…]	
 Matches any single character not in brackets.	

a|b	
 Matches either a or b.	

[0-9]	
 Matches any digit; same as /[0123456890]/	

[a-z]	
 Match any lowercase ASCII letter	

Regular Expression Patterns(2)	

Pattern	
 Description	

re{ n} Matches exactly n number of occurrences of preceding
expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding
expression.

(re) Groups regular expressions and remembers matched text.

\d	
 Matches digits. Equivalent to [0-9].	

\s	
 Matches whitespace. Equivalent to [\t\n\r\f]./	

Example:	
 /(foo){1}/ # => “foo”	

/(foo){2,}/ # => “foofoofoo”	

/(foo){1,2}/ # => “foofoo”	

/\(\d{3}\)\s(\d{3})-(\d{4}/ # => (123) 456-7890	

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm	

Ruby Regular Expression Tester	

Visit the site: http://rubular.com/

	

Repetition in loop
l  Both “for”, “while”, and “until” can be

used, but iterators are often used.

Array１ = [’Nakano’, ’Mitaka’, ’Tachikawa’]
i = 0
while array1[i]
 puts array1[i]
 i += 1
end

Repetition with iterator
l  times, upto, each, each_with_index, and

such methods are used as iterators.

10.times do { |i| print i, ', ' }

Array１ = [’Nakano’, ’Mitaka’, ’Tachikawa’]	

array1.each do |item|
 print item + ','
end

Syntax of Ruby	

Visit the following site:
http://web.njit.edu/all_topics/Prog_Lang_Docs/

html/ruby/yacc.html

YACC is a tool to design the compiler; stands for

“Yet Another Compiler compiler,” and is used
together with LEX.

LEX is a lexical analyzer, to design the BNF of the
language.

BNF stands for Backus-Naur Form. It is used to
discribe the grammar of languages.

	

Ruby Language Reference Manual	

Visit the following site:
http://web.njit.edu/all_topics/

Prog_Lang_Docs/html/ruby/index.html

Now I refer to the above site.
	

Reserved Words	

BEGIN	
 class	
 ensure	
 nil	
 self	
 when	

END	
 def	
 false	
 not	
 super	
 while	

alias	
 defined	
 for	
 or	
 then	
 yield	

and	
 do	
 if	
 redo	
 true	

begin	
 else	
 in	
 rescue	
 undef	

break	
 elsif	
 module	
 retry	
 unless	

case	
 end	
 next	
 return	
 until	

Modules and recursive call	

We can define a module to write some

methods.
module Foo

 def test
 :
 end
 :

end

Examples:
 def fact(n)
 if n== 1 then
 1
 else
 n * fact(n-1)
 end
 end

	

Method names end with ‘?’	

Ruby has some method names end with ‘?’.
 defined?, empty?, exited?, any?, all?,
include?, coredump?, etc.

Also some method names end with ‘!’.
 reject!, next!, delete!, etc.

“abc”.empty? # ==> false
“”.empty? # ==> true

Yield and Block as an argument	

Ruby can hand a block as an argument.
Yield call the block, and the procedure does

not appear in the argument list.
	

def bar(x)
 p block_given?
 return x + 2
end

p bar(3)
p bar(5) { p “zot” }	

def bar(x, &proc)
 proc.call if block_given?
 return x + 2
end

p bar(3)
p bar(5) { p “zot” }	

def bar(x)
 yield if block_given?
 return x + 2
end

p bar(3)
p bar(5) { p “zot” }	

Scope of methods	

Just like c++, C#, and Java, there are three scope

types in Ruby;
 private, protected, and public

Public methods have no limit in accessing.
Protected methods can be called only from the

same class methods or its subclass.
Private methods can be called from the same class

methods or its subclass, too!
When we define a class method in a subclass, it can

override the method of the same name in a
parent class.

	

Ruby’s method or Rails’ method?	

When we read Ruby on Rails generated

source code, we should be careful if the
methods are defined in Ruby language or
Rails environment.

We can use .blank? method in rails
environment, but it is not defined in Ruby.

Also, we need to learn the Superclass
methods in the generated source codes.	

Rails Document (Practice)	

To read the Rails generated source code,

first, we have to check the superclass of
the generated classes.

Visit the following site:
http://api.rubyonrails.org/
Here are documents for super classes.
Check the following words in this API

reference;
attr_accessible, has_one, redirect_to, and

such.
	

Further more…	

Two lecture days are too short to learn one
language.

What we have learnt during those two
lecture days were the tutorial background
knowledge to read the automatically
generated source program of Ruby on
Rails.

When necessary, grammatical explanations
are added to the lecture slides. 	

Practice	

1) Write the regular expression of mail

address.
2)  Find add_column (Migration) methods in

the API reference, and find what other
migration methods are available.

No Report is re quested for this practice.

