
Web System Development with
Ruby on Rails

Day 11(6/Dec/2012)
File uploading and Image Display

Today's Theme
p  Upload image files to the database, and

let Memopad store the image file.

p  Try some other file types, such as sound
file play.

Design Concept of
Image (Figure) Attachment
l  Table Name: figures
l  Model name : figure
l  Relationship : (memos : figures) => 1 to many

l  One ’memo' can have many images (figures)
l  One picture belongs to only one memos
l  Memos which do not have figures have no problem

without having any figures with it.

l  Figures has ’memo_id' field for relation
information.

Generate Figure model
l  Input the following command to generate

the model 'Figure'

rails generate model figure

memo_id:integer file_name:string
file_type:string file_size:integer
content:binary

Figure class structure
memo_id is the relation id for

memos table. ‘file_type’ is MIME
Type name, the kinds of type such

as gif, jpg and png. Content
contains the image file itself.

Setting up Relations
l  Looking from figures, they only belong to

one memo, so the specification of
belongs_to :memo
is added to figure.rb

l  Modify app/models/figure.rb

Setting up Metadata
l  If the image size is small, we may not

mind the waiting time to show the image,
instead when the file size is great, we
may be irritated.
l  (It is not the sole reason.)

l  So, make the metadata (data for data) to
show the metadata information before we
obtain the file.

Metadata Definition (figure.rb)
 METADATA_COLUMNS = 'id, memo_id, file_name, file_size, file_type'

 def self.metadatas(question)
 find :all, :select => METADATA_COLUMNS,
 :condition => ['question_id = ?', question.id]
 end

 def self.metadata(id)
 find id, :select => METADATA_COLUMNS
 end

Setting up Relations (2)
l  Relationship from memos to figures is

“has_many”
l  Here through the figures attributes of Memo

class, directly access to the figures' record,
defined with METADATA_COLUMNS

 has_many :figures, :select => Figure::METADATA_COLUMNS

Add figure files, in memo creation	

When a memo is created, figure files should
be added to the memo.

Modify memos_controller.rb file at create
method.	

Method name with '?'
l  respond_to?（:symbolName）	

The object is capable of responding to the caller
when the “symbolName” method is called, this
“respond_to?” method returns “true”. This
means, that the object is installed with
“symbolName” method.

 app/controllers/memos_controller.rb
 # POST /memos
 # POST /memos.json
 def create
 @memo = Memo.new(params[:memo])

 respond_to do |format|
 if @memo.save
 @file = params[:file][:upload]
 stat = @file.tempfile.stat
 if @file && @file.respond_to?(:original_filename)
 @memo.figures.create :file_name => @file.original_filename,
 :file_size => stat.size,
 :file_type => @file.content_type,
 :content => @file.read
 end
 format.html { redirect_to @memo, notice: 'Memo was successfully created.' }
 format.json { render json: @memo, status: :created, location: @memo }

(The rest is omitted.)
	

Add file generation
to the create method.

It will be executed when
there is an 'original_filename'

property

Note that those
names are specified

in the migration.

create method in memos_controller.rb
l  The following lines are to be added.

memos_controller.rb
l  Add File method after the destroy method.
 def file
 figure = Figure.find params[:id]
 filename = (params[:fileext]) ? "#{params[:filename]}.#{params[:fileext]}" :
 params[:filename]
 if filename != figure.file_name
 render :file => File.join(RAILS_ROOT, 'public', '404.html'),
 :status => 404, :layout => true
 else
 send_data figure.content,
 :filename => figure.file_name, :type=>figure.file_type
 end
 end

File action, which
is called for down
loading images

Add route for memos#file	

Edit config/routes.rb
Before resources :memos, add
 get ‘memos/file’ => ‘memos#file’

	

 views modification	

Controllers are modified, and then next few
steps are to modify views image display
files.	

 app/views/memos/_form.html.erb
An image file generally has big size of binary
information, and cannot be uploaded in only
one packet.
So, set up the multi-packet transmission,
<%= form_for @memo, :html=>{:multipart => true} do |f| %>

where it used to be
<%= form_for (@memo) do |f| %>

	

Input for file uploading	

 app/views/memos/_form.html.erb
l  	
 	
 <div	
 class=“field”>	

	
 	
 	
 	
 	
 	
 <%=	
 f.label	
 :figure:	

	
 	
 	
 	
 	
 	
 <%=	
 file_field	
 :file,	
 :upload	
 %>	

	
 	
 	
 	
 	
 </div>	

Uploaded file can be extracted
by params[:file][:upload]	

Prepare to show image file	

l  There are two types

of modification.
l  [Pattern 1]

l  To show the image
itself.

l  [Pattern 2]
l  Only show the link to

the image file, so that
users can download
the file. (right-click)

Edit show.html.erb
to show image.

Add the Image file
display in
show.html.erb	

To show the image
file, use helper
method.

memos_helper.rb
module MemosHelper
 def format_column_value(ar, colname)
 if Memo === ar
 format_memo_column_value ar, colname
 elsif Figure === ar
 format_figure_column_value ar, colname
 end
 end
	

 def format_memo_column_value(memo, colname)
 if colname == 'created_at'
 memo.created_at.strftime '%Y-%m-%d %H:%M' if memo.created_at
 else
 colname
 end
 end
	

 def format_figure_column_value(atch, colname)
 if colname == 'content'
The following two lines are to show only link to the file,
so that users can right-click and download the image file.
link_to atch.name, {:action => 'file', :id => atch.id,
:filename => atch.name }
The following one line is to show the image itself.
 image_tag atch.content, atch.size, atch.name
 end
 end
end

memos_helper.rb	

=== operator in memos_helper.rb
l  In this helper method, look up the

attribute of each column, and choose the
method to show the content.	

l  The operator ‘===‘ is not common in
other languages. If Figure === ar means
“if the object ‘ar’ is an instance of Figure
Class.”	

Edit show.html.erb	

<p id="notice"><%= notice %></p>
	

<p>
 Content:
 <%= @memo.content %>
</p>
<p>
 Category:
 <%=h @memo.category.name %>
</p>
	

<p>
 Attached Figures:
 <% if @memo.figures.length>0 %>
 <% for figure in @memo.figures %>
 <% if figure.file_type =~ /^image¥/.*?(png|jpeg|gif)$/ %>
 <%= image_tag url_for({:action => 'file', :id=> figure.id,
 :filename => figure.file_name}), :alt => figure.file_name %>
 <% end %>
 <% end %>
 <% end %>

</p>
	

<%= link_to 'Edit', edit_memo_path(@memo) %> |
<%= link_to 'Back', memos_path %>

Show.html.erb file	

index.html.erb
l  For debugging purpose, in index.html.erb, let

the program shows only figures are attached
or not.	

 	

(Table part) index.html.erb	

<table border="1">
 <tr>
 <th><%= t :content %></th>
 <th>Category</th>
 <th>Figures</th>
 <th></th>
 <th></th>
 <th></th>
 </tr>
	

<% @memos.each do |memo| %>
 <tr>
 <td><%= memo.content %></td>
 <td><%= memo.category.name %></td>
 <td><% if memo.figures.empty? %>
 Empty
 <% else %>
 Exists
 <% end %>
 </td>
 <td><%= link_to (t 'show'), memo %></td>
 <td><%= link_to (t 'edit'), edit_memo_path(memo) %></td>
 <td><%= link_to (t 'destroy'), memo, method: :delete, data: { confirm: 'Are you sure?' } %></td>
 </tr>
<% end %>
</table>
	

Test run	

Confirm that we can upload image.	

Check the list screen	

l  Confirm that we can see if an attached
file is empty or exists.	

Final modification for index.html.erb	

Replace the “figures empty/exist” text part
with the following image display.	

Today’s final screen.	

Finally, we can see figures with memo.	

Practice	

No report is requested, however, try to fix the
following problems.

(1)  When we destroy a memo record, the

linked figures left undestroyed. Add some
program to the destroy method in the
memos controller.

(2)  The relationship between memo and figures
is one-to-many. But, we do not have a
control logic to add/remove attached
figures. Try this.	

The answer for today’s practice	

Next week, in the session control lecture, I

will show my program as one answer for
the problems listed in the previous slide.

But, as graduate school students, I hope
you could solve this problem by
yourselves. 	

Absence Report for Today	

p  Submit the report of screenshots, to

show that you could upload image file to
memo, just like the following.	

